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Sets ,Relations and Functions

1.1 SETS AND ELEMENTS, SUBSETS

A set may be viewed as any well-defined collection of objects, called the elements or members of the set.
One usually uses capital letters, A, B, X,Y,..., to denote sets, and lowercase letters, a, b, X, y,.. ., to denote
elements of sets. Synonyms for “set” are “class,” “collection,” and “family.”

Membership in a set is denoted as follows:

a € S denotes that a belongsto aset S
a, b € S denotes that a and b belong to a set S
Here € is the symbol meaning “is an element of.” We use /€ to mean “is not an element of.”

Specifying Sets

There are essentially two ways to specify a particular set. One way, if possible, is to list its members separated
by commas and contained in braces { }. Asecond way is to state those properties which characterized the elements
in the set. Examples illustrating these two ways are:

A={1,3,5 7 9} and B = {x | xisan even integer, x > 0}

That is, A consists of the numbers 1, 3, 5, 7, 9. The second set, which reads:

B is the set of x such that x is an even integer and x is greater than O,
denotes the set B whose elements are the positive integers. Note that a letter, usually x, is used to denote a typical
member of the set; and the vertical line | is read as “such that” and the comma as “and.”

EXAMPLE 1.1
(@) The set A above can also be written as A = {x | x is an odd positive integer, x <10}.
(b) We cannot list all the elements of the above set B although frequently we specify the set by
B=1{2,4,6,..1
where we assume that everyone knows what we mean. Observe that 8 € B, but 3 £ B.
) LetE={x|x*—3+2=0}L,F={2,1}andG ={1,2, 2,1}, ThenE= F = G.

We emphasize that a set does not depend on the way in which its elements are displayed. A set remains the
same if its elements are repeated or rearranged.

Even if we can list the elements of a set, it may not be practical to do so. That is, we describe a set by listing its
elements only if the set contains a few elements; otherwise we describe a set by the property which characterizes
its elements.

Subsets

Suppose every element in a set A is also an element of a set B, that is, suppose a ¢ A impliesa  B. Then
Ais called a subset of B. We also say that A is contained in B or that B contains A. This relationship is written

ASB or B2 A

Two sets are equal if they both have the same elements or, equivalently, if each is contained in the other. That is:

A= Bifandonlyif AC BandB< A

If A is not a subset of B, that is, if at least one element of A does not belong to B, we write A /< B.



EXAMPLE 1.2 Consider the sets:
A=1{1,3,4,7,89},B=1{1,2,3,4,5},C={1,3}
Then C < Aand C < B since 1 and 3, the elements of C, are also members of A and B. But B /< A since some
of the elements of B, e.g., 2 and 5, do not belong to A. Similarly, A /< B.
Property 1: It is common practice in mathematics to put a vertical line [ or slanted line */” through a symbol

to indicate the opposite or negative meaning of a symbol.

Property 2: The statement A < B does not exclude the possibility that A = B. In fact, for every set A we have
A < Assince, trivially, every element in A belongs to A. However, if A< Band A /= B, then we say Ais a
proper subset of B (sometimes written A C B).

Property 3: Suppose every element of a set A belongs to a set B and every element of B belongs to a set C.
Then clearly every element of A also belongs to C. In other words, if A< Band B < C, then A < C.

The above remarks yield the following theorem.
Theorem 1.1: Let A, B, C be any sets. Then:

(i) A< A
(i) fAcBandB< A thenA=B
(iii) fAcBandB < C,thenAcC

Special symbols

Some sets will occur very often in the text, and so we use special symbols for them. Some such symbols are:
N = the set of natural numbers or positive integers: 1, 2, 3,...
Z = the set of all integers: ..., =2, —1,0, 1, 2,...
Q = the set of rational numbers
R = the set of real numbers

C = the set of complex numbers
ObservethatNc Z<c Q< Rc<c C.

Universal Set, Empty Set

All sets under investigation in any application of set theory are assumed to belong to some fixed large set
called the universal set which we denote by
u

unless otherwise stated or implied.
Given a universal set U and a property P, there may not be any elements of U which have property P. For
example, the following set has no elements:

S = {x | x is a positive integer, x> = 3}

Such a set with no elements is called the empty set or null set and is denoted by

0

There is only one empty set. That is, if S and T are both empty, then ST , since they have exactly the same
elements, namely, none.

The empty set @5 also regarded as a subset of every other set. Thus we have the following simple result
which we state formally.

Theorem 1.2: For any set A, we have @< A c U.

Disjoint Sets



Two sets A and B are said to be disjoint if they have no elements in common. For example, suppose

A=1{1,2}, B={4,56}, and C= {56, 7,8}

Then A and B are disjoint, and A and C are disjoint. But B and C are not disjoint since B and C have elements in
common, e.g., 5and 6. We note that if A and B are disjoint, then neither is a subset of the other (unless one is the
empty set).

1.2 VENN DIAGRAMS

A Venn diagram is a pictorial representation of sets in which sets are represented by enclosed areas in the
plane. The universal set U is represented by the interior of a rectangle, and the other sets are represented by disks
lying within the rectangle. If A 8, then the disk representing A will be entirely within the disk representing B as
in Fig. 1-1(a). If A and B are disjoint, then the disk representing A will be separated from the disk representing B
as in Fig. 1-1(b).

v U v
(a) ACB (b) A and B are disjoint (c)
Fig. 1-1

1.3 SET OPERATIONS

This section introduces a number of set operations, including the basic operations of union, intersection, and
complement.

Union and Intersection
The union of two sets A and B, denoted by A U B, is the set of all elements which belong to A or to B;
that is,

AUB={]|xeAorx € B}

Here “or” is used in the sense of and/or. Figure 1-3(a) is a Venn diagram in which A ) B is shaded.
The intersection of two sets A and B, denoted by A n B, is the set of elements which belong to both A and
B; that is,

ANB={x]|xe Aandx € B}
Figure 1-3(b) is a Venn diagram in which A N B is shaded.



() A U B s shaded (h)y A M Bis shaded

Fig. 1-3

Recall that sets A and B are said to be disjoint or nonintersecting if they have no elements in common or, using
the definition of intersection, if A N B = J, the empty set. Suppose

S=AUB and ANB=Y

Then S is called the disjoint union of A and B.

EXAMPLE 1.4

@ LetA={1,2,34},B=4{3,4,56,7} C={2,3, 8,9} Then
AuB=1{1,23,4567,AuC=1{1,22348,9,BuUC=1{23,4,5,6,7,8,09},
AN B ={3,4}, AN C=1{23} Bn C=1{3}

(b) Let U be the set of students at a university, and let M denote the set of male students and let F denote the set
of female students. The U is the disjoint union of M of F ; thatis,

U=MUF and MNF=9

This comes from the fact that every student in U is either in M or in F, and clearly no student belongs to both M
and F, that is, M and F are disjoint.

The following properties of union and intersection should be noted.

Property 1: Everyelementxin AN B belongstoboth Aand B; hence x belongsto A and x belongsto B. Thus
A N B isasubset of A and of B; namely

ANB<A and ANnBcB

Property 2: An element x belongs to the union A U B if x belongs to A or x belongs to B; hence every element
in A belongs to A U B, and every element in B belongs to A U B. That is,

AcAUB and B AUB
We state the above results formally:
Theorem 1.3: For any sets A and B, we have:

WANnB<cAcAuUuBand(i)ANnB<B<AUB.

The operation of set inclusion is closely related to the operations of union and intersection, as shown by the
following theorem.

Theorem 1.4: The following are equivalent: A< B, AnB=A AU B=B.
This theorem is proved in Problem 1.8. Other equivalent conditions to are given in Problem 1.31.
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Fig. 1-4

Complements, Differences, Symmetric Differences

Recall that all sets under consideration at a particular time are subsets of a fixed universal set U. The absolute
complement or, simply, complement of a set A, denoted by A€, is the set of elements which belong to U but which do
not belong to A. That s,

A ={x|x eU,x £ A}
Some texts denote the complement of A by A or A. Fig. 1-4(a) is a Venn diagram in which A is shaded.

The relative complement of a set B with respect to a set A or, simply, the difference of A and B, denoted by
A\B, is the set of elements which belong to A but which do not belong to B; that is

AB ={x|x €A,x B}

The set A\B is read “A minus B.” Many texts denote A\B by A — B or A ~ B. Fig. 1-4(b) is a Venn diagram in
which A\B is shaded.

The symmetric difference of sets A and B, denoted by A @ B, consists of those elements which belong to A
or B but not to both. That is,

A®B=(AUB\(ANB) or A®B = (A\B)U (B\A)

Figure 1-4(c) is a Venn diagram in which A @ B is shaded.

EXAMPLE 1.5 Suppose U = N = {1, 2, 3,.. .} is the universal set. Let
A = {11 2! 3! 4}! B = {3! 4! 5! 6! 7}! C = {2! 3! 8! 9}1 E = {21 41 61" '}
(Here E is the set of even integers.) Then:
A®=1{56,7..},B=1{1,28,9,10,..}, E={1,3,5,7,.. .}

That is, EC is the set of odd positive integers. Also:

A\B = {1, 2}, A\C ={1,4}, B\C ={4,5,6,7}, A\E = {1,3},
B\A =1{5, 6,7}, C\A =1{8,9}, C\B = {2,8,9}, E\A = {6,8,10,12,.. .}.
Furthermore:

A®B = (A\B)U(B\A) ={1,2,56,7}, B&C={24,5,6,7,8,9},
A®C = (A\C)U (B\C) = {1,4,8,9}, A®E ={1,36,8,10,...}.

Fundamental Products

Consider n distinct sets As, A, ..., Ar.A fundamental product of the sets is a set of the form

AinAsn...NnA;, where Af =A or Ai =A°



We note that:

= (i) Therearem 2"such fundamental products.
(if) Any two such fundamental products are disjoint.
(iii) The universal set U is the union of all fundamental products.

Thus U is the disjoint union of the fundamental products (Problem 1.60). There is a geometrical description of
these sets which is illustrated below.

EXAMPLE 1.6 Figure 1-5(a) is the Venn diagram of three sets A, B, C. The following liststhem =2° —8
fundamental products of the sets A, B, C:

Pir=ANBNC, Ps;=ANB°NC, Ps=A°NBNC, P;=A°NnB°nNC,
P,=ANBNC® P;=ANB°NCE Ps=A°N"BNC" Ps = A N B N C°C.

The eight products correspond precisely to the eight disjoint regions in the Venn diagram of sets A, B, C as
indicated by the labeling of the regions in Fig. 1-5(b).

“3‘ A%A

(a) (b)

Fig. 1-5

1.4 ALGEBRA OF SETS, DUALITY

Sets under the operations of union, intersection, and complement satisfy various laws (identities) which are listed
in Table 1-1. In fact, we formally state this as:

Theorem 1.5: Sets satisfy the laws in Table 1-1.

Table 1-1 Laws of the algebra of sets

Idempotent laws: (layAU A=A (Ib) AN A=A
/Associative laws: () AuB)uUC=AU BUDQCQC) (2b) ANB)NnC=ANn(BNC)
Commutative laws: |3a) AUB=BU A (BD) AN B=BNA
Distributive laws: 4a)AUBNC)=AUB)NAUC) (4b)ANnBUC)=ANB)UANC)
. ) 5a)AUP =A BhyAnU=A
Identity laws: 6)AUU=U EAND =0
Involution laws: (7) (AS)C = A
(Ba)AU A =U (8b) AN AC =0
Complement laws:
(9a) U =0 (9b) @€ =U
DeMorgan’s laws:  ((10a) (A U B)® = A°n B® (10b) (A N B)® = A® U B®




Remark: Each law in Table 1-1 follows from an equivalent logical law. Consider, for example, the proof of
DeMorgan’s Law 10(a):

(AUB) ={x|xZ(AorB)}={x|xZAandx ZB} = A® n B® Here we use the
equivalent (DeMorgan’s) logical law:
~(PVa)=-pA—q

where —means “not,” \v means “or,” and means “and.” (Sometimes Venn diagrams are used to illustrate the
laws in Table 1-1 as in Problem 1.17.)

Duality

The identities in Table 1-1 are arranged in pairs, as, for example, (2a) and (2b). We now consider the principle behind
this arrangement. Suppose E is an equation of set algebra. The dual E* of E is the equation obtained by replacing
each occurrence of U, N, Uand & in E by N, U, &, and U, respectively. For example, the dual of

UNnAUBNA)=AIS(CUANBUA)=A

Observe that the pairs of laws in Table 1-1 are duals of each other. It is a fact of set algebra, called the principle
of duality, that if any equation E is an identity then its dual E* is also an identity.

1.5 FINITE SETS, COUNTING PRINCIPLE

Sets can be finite or infinite. Aset S is said to be finite if S is empty or if S contains exactly m elements where
m is a positive integer; otherwise S is infinite.

EXAMPLE 1.7

(a) ThesetA of the letters of the English alphabet and the set D of the days of the week are finite sets. Specifically,
A has 26 elements and D has 7 elements.

(b) Let E be the set of even positive integers, and let | be the unit interval, that is,
E=1{246,.} and 1=1[0,1]={x|]0=<x <1}
Then both E and | are infinite.

A set S is countable if S is finite or if the elements of S can be arranged as a sequence, in which case S is said to
be countably infinite; otherwise S is said to be uncountable. The above set E of even integers is countably infinite,

whereas one can prove that the unit interval I = [0, 1]is uncountable.

Counting Elements in Finite Sets

The notation n(S) or S will ¢ignote the number of elements in a set S. (Some texts use #(S) or card(S) instead of
n(S).) Thus n(A) 26, where A isthe letters in the English alphabet, and n(D) 7, where D is the- days of the week.
Also n() 0 since the empty@ethas no elements.

The following lemma applies.

Lemma 1.6: Suppose A and B are finite disjoint sets. Then A U B is finite and
n(A U B) = n(A) + n(B)
This lemma may be restated as follows:

Lemma 1.6: Suppose S is the disjoint union of finite sets A and B. Then S is finite and

n(S) = n(A) +n(B)



Proof. In counting the elements of A B, first count those that are in A. There are n(A) of these. The only other
elements of A B are those that are in B but not in A. But since A and B are disjoint, no element of B isin A, so
there are n(B) elements that are in B but not in A. Therefore, n(A B)n(A)=n(B). +

For any sets A and B, the set A is the disjoint union of A B and A B.\Thus Lemma 1.6 gives us the following useful
result.

Corollary 1.7: Let A and B be finite sets. Then

n(A\B) = n(A) — n(A N B)

For example, suppose an art class A has 25 students and 10 of them are taking a biology class B. Then the number
of students in class A which are not in class B is:

N(A\B) = n(A) — n(A N B) = 25 — 10 = 15

Given any set A, recall that the universal set U is the disjoint union of A and A°. Accordingly, Lemma 1.6 also
gives the following result.

Corollary 1.8: Let A be a subset of a finite universal set U. Then

n(A®) = n(U) —n(A)

For example, suppose a class U with 30 students has 18 full-time students. Then there are-30 18 12 part-time
students in the class U.

Inclusion—-Exclusion Principle

There is a formula for n(A u B) even when they are not disjoint, called the Inclusion—Exclusion Principle.
Namely:

Theorem (Inclusion—Exclusion Principle) 1.9: Suppose A and B are finite sets. Then A yB and A B are
finite and

n(A U B) = n(A) + n(B) — n(A N B)
That is, we find the number of elements in A or B (or both) by first adding n(A) and n(B) (inclusion) and then

subtracting n(A B) (exclusion) since its elements were counted twice.
We can apply this result to obtain a similar formula for three sets:

Corollary 1.10: Suppose A, B, C are finite sets. Then A U B U C is finite and
NAUBUC)=n(A)+nB)+nlC)—nANnB)—nANC)—nBNC)+nAn BN C)

Mathematical induction (Section 1.8) may be used to further generalize this result to any number of finite sets.

EXAMPLE 1.8 Suppose a list A contains the 30 students in a mathematics class, and a list B contains the 35
students in an English class, and suppose there are 20 names on both lists. Find the number of students:
(@) only on list A, (b) only on list B, (c) on list A or B (or both), (d) on exactly one list.

(@) List A has 30 names and 20 are on list B; hence 30 — 20 =10 names are only on list A.
(b) Similarly, 35 — 20 =15 are only on list B.
(c) Weseek n(A U B). Byinclusion—exclusion,

n(A U B) = n(A) + n(B) — n(A N B) = 30 + 35 — 20 = 45.

In other words, we combine the two lists and then cross out the 20 names which appear twice.

(d) By (a)and (b), 10 + 15 = 25 names are only on one list; that is, n(A ® B) = 25.

However, if A and B are two arbitrary sets, it is possible that some objects are in A but not in B, some are in
B but not in A, some are in both A and B, and some are in neither A nor B; hence in general we represent A and
B as in Fig. 1-1(c).



Power Sets

For a given set S , we may speak of the class of all subsets of S. This class is called the power set of S , and
will be denoted by P (S). If S is finite, then so is P (S). In fact, the number of elements in P (S)is 2 raised to the
power n(S). That is,

n(P(s)) = 2

(For this reason, the power set of S is sometimes denoted by 25 )

EXAMPLE 1.10 Suppose S = {1, 2, 3}. Then

P(S) = [0,{1},{2},{3}, {1, 2},{1, 3}, {2, 3}, S]

Note that the empty set @ belongs to P (S) since & is a subset of S. Similarly, S belongs to P (S). As expected
from the above remark, P (S) has 2° = 8 elements.

1.6  MATHEMATICAL INDUCTION
An essential property of the set N = {1, 2, 3, ...} of positive integers follows:

Principle of Mathematical Induction I: Let P be a proposition defined on the positive integers N; that is, P (n)
is either true or false for each n ¢ N. Suppose P has the following two properties:
(i) P (1) istrue.

(i) P (k + 1) is true whenever P (k) istrue.
Then P is true for every positive integer n € N.

We shall not prove this principle. In fact, this principle is usually given as one of the axioms when N is
developed axiomatically.

EXAMPLE 1.13 Let P be the proposition that the sum of the first n odd numbers is n?; that is,
PM:1+3+5+ -+ @n—-1)=n?
(The kth odd number is 2k — 1, and the next odd number is 2k + 1.) Observe that P (n) is true for n = 1; namely,
P()=12
Assuming P (k) is true, we add 2k + 1 to both sides of P (k), obtaining
14345+ -+ k-1 +Ck+1) -k +@k+1)=(k+1)?

which is P (k + 1). In other words, P (k + 1) is true whenever P (k) is true. By the principle of mathematical
induction, P is true for alln.

There is a form of the principle of mathematical induction which is sometimes more convenient to use.
Although it appears different, it is really equivalent to the above principle of induction.

Principle of Mathematical Induction Il: Let P be a proposition defined on the positive integers N such that:
(i) P(1)istrue.

(i) P (k) istrue whenever P (j)istrue forall1 < j <k.
Then P is true for every positive integer n € N.

Remark: Sometimes one wants to prove that a proposition P is true for the set of integers
{a,a+ la+2a-+ 3,..}

where a is any integer, possibly zero. This can be done by simply replacing 1 by a in either of the above Principles
of Mathematical Induction.



Relations
2.1 PRODUCT SETS

Consider two arbitrary sets A and B. The set of all ordered pairs (a, b) wherea Aardb B iscalled the
product, or Cartesian product, of A and B. A short designation of this product isA B, whichdsread  “A cross
B.” By definition,

AxB=1{@b)|acAandb e B}

One frequently writes A% instead of A X A.

EXAMPLE 2.1 R denotes the set of real numbers and so R>-R R is the set of ordered pairs of real numbers.
The reader is familiar with the geometrical representation of R? as points in the plane as in Fig. 2-1. Here each
point P represents an ordered pair (a, b) of real numbers and vice versa; the vertical line through P meets the x-
axis at a, and the horizontal line through P meets the y-axis at b. R? is frequently called the Cartesian plane.

EXAMPLE 2.2 Let A = {1, 2} and B = {a, b, c}. Then

AX B ={(1,a), (1,b), (1,¢), (2,a), (2,b), (2,c)}
BxA=1{(a1), (b1), (c,1), (a2), (b,2), (c,2)}
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Also, A x A = {(1, 1), (1, 2), (2, 1), (2, 2)}

Fig. 2-1

There are two things worth noting in the above examples. First of all A B B>A. The Cartesian product deals with
ordered pairs, so naturally the order in which the sets are considered is important. Secondly, using n(S) for the
number of elements in a set S, we have:

n(A X B) = 6 = 2(3) = n(A)n(B)

In fact, n(A X B) = n(A)n(B) for any finite sets A and B. This follows from the observation that, for an ordered
pair (a, b) in A X B, there are n(A) possibilities for a, and for each of these there are n(B) possibilities for b.

The idea of a product of sets can be extended to any finite number of sets. For any sets A1, Az,..., An, the set of

all ordered n-tuples (a1, az,..., an) where a1 A, a2 Ag,..., andn is called the product of the sets A4,..., A,and
is denoted by -

n
Al XAr X - XA, or A1
i=1



Just as we write A? instead of A X A, so we write A" instead of A X A X - -+ X A, where there are n factors all
equal to A. For example, R® = R X R X R denotes the usual three-dimensional spac

Definition 2.1: Let A and B be sets. A binary relation or, simply, relation from A to B is a subset of A X B.

Suppose R is a relation from A to B. Then R is a set of ordered pairs where each first element comes from
A and each second element comes from B. That is, for each paira <A andb B, exactly one of the following
is true:

() (a, b) € R;we then say “a is R-related to b”, written aRb.
(i) (a,b) € R; we then say “a is not R-related to b”, written ajZb.

If R is arelation from a set A to itself, that is, if R is a subset of A2 = A x A, then we say that R is a relation on A.
The domain of a relation R is the set of all first elements of the ordered pairs which belong to R, and the
range is the set of second elements.

EXAMPLE 2.3

(@ A= (1,2,3)andB = {x,y,z},and letR = {(1,y), (1,2), (3, y)}. Then R is a relation from A to B since R
is a subset of A X B. With respect to this relation,

1Ry, 1Rz, 3Ry, but  1&x, 2&X, 2Ry, 2Rz, 3R&X, 3Rz
The domain of R is {1, 3} and the range is{y, z}.

(b) Set inclusion < is a relation on any collection of sets. For, given any pair of set A and B, either A < B
or A /< B.

(c) A familiar relation on the set Z of integers is “m divides n.” A common notation for this relation is to write
m|n when m divides n. Thus 6 |30 but 7 | 25. _

(d) Consider the set L of lines in the plane. Perpendicularity, written “_L,” is a relation on L. That is, given any
pair of lines a and b, either a L bora Zb. Similarly, “is parallel to,” written “||,” is a relation on L since
eitherall bora /Il b.

(e) Let A be any set. An important relation on A is that ofequality,

{(@ a)| ae A}

which is usually denoted by “ .” This relation is also called the identity or diagonal relation on A and it will also
be denoted by Oa or simply O.

(f) Let A be any set. Then A Acand are @ubsets of A A andshence are relations on A called the universal relation
and empty relation, respectively.

Inverse Relation

Let R be any relation from a set A to a set B. The inverse of R, denoted by R-2, is the relation from B to A
which consists of those ordered pairs which, when reversed, belong to R; that is,

R-1={(b, a) | (a, b) R}
For example, let A = {1,2,3}and B = {x,y, z}. Then the inverse of

R={1y). @2, Gy} isR*={(y 1), (z1),(y 3)}

Clearly, if R is any relation, then (R-*)-! R=Also, the domain and range of R-* are equal, respectively, to the
range and domain of R. Moreover, if R is a relation on A, then R— is also a relation onA.



2.2 PICTORIAL REPRESENTATIVES OF RELATIONS
There are various ways of picturing relations.
Relations on R

Let S be a relation on the set R of real numbers; that is, S is a subset of R> R -R. Frequently, S consists of all
ordered pairs of real numbers which satisfy some given equation E(x, y) O (such as x? y? 25). 4+ =

Since R? can be represented by the set of points in the plane, we can picture S by emphasizing those points in the
plane which belong to S. The pictorial representation of the relation is sometimes called the graph of the relation.
For example, the graph of the relation x? y? 25 is g.circle having its center at the origin and radius 5. See Fig. 2-

2(a).
: ()

¥
-—5! > X
—5b
22+ y2 = 25
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Fig. 2-2

Directed Graphs of Relations on Sets

There is an important way of picturing a relation R on a finite set. First we write down the elements of the set, and
then we draw an arrow from each element x to each element y whenever x is related to y. This diagram is called
the directed graph of the relation. Figure 2-2(b), for example, shows the directed graph of the following relation R

on the set A = {1, 2, 3, 4};
R=1{(1,2),(2,2),(24),3 2,3 4),41),423)}

Observe that there is an arrow from 2 to itself, since 2 is related to 2 under R.

These directed graphs will be studied in detail as a separate subject in Chapter 8. We mention it here mainly for
completeness.

Pictures of Relations on Finite Sets

Suppose A and B are finite sets. There are two ways of picturing a relation R from A to B.

(i) Form arectangular array (matrix) whose rows are labeled by the elements of A and whose columns are
labeled by the elements of B. Put a 1 or 0 in each position of the array according as a € A is or is not
related to b € B. This array is called the matrix of the relation.

(i) Write down the elements of A and the elements of B in two disjoint disks, and then draw an arrow from
a € Atob € B whenever aisrelated to b. This picture will be called the arrow diagram of the relation.

Figure 2-3 pictures the relation R in Example 2.3(a) by the above two ways.
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2.3 COMPOSITION OF RELATIONS

Let A, B and C be sets, and let R be a relation from A to B and let S be a relation from B to C. That is, R is a subset
of A B and Sigasubset of B C. Then Rand S give rise to a relation from A to C denoted by R S and defined

by:
That is ,a(RoS)c if for some b € B we have aRb and bSc.

R o S ={(a, c) | there exists b € B for which (a, b) € Rand (b, c) € S}

The relation R Sds called the composition of R and S; it is sometimes denoted simply by RS.

Suppose R is a relation on a set A, that is, R is a relation from a set A to itself. Then R R, the composition of R
with itself, is always defined. Also, R R is semetimes denoted by R2. Similarly, R® R? R =R RoR,=andso0 on.
Thus R" is defined for all positive n.

EXAMPLE 2.4 LetA =1{1,2,3,4},B ={a,b,c,d}, C = {x,y, z} and let
R =1{(1,a),(2,d),(3,a),(3,b),(3,d)} and S = {(b,x), (b,2),(c,y),(d, 2)}

Consider the arrow diagrams of R and S as in Fig. 2-4. Observe that there is an arrow from 2 to d which is followed
by an arrow from d to z. We can view these two arrows as a “path” which “connects” the element 2 € A to the
elementz € C. Thus:

2(R o S)z since 2Rd and dSz

Similarly there is a path from 3 to x and a path from 3 to z. Hence

3(RoS)x and 3(RoS)z

No other element of A is connected to an element of C. Accordingly,

Ro S={(22), (3 x), @3 2}

Our first theorem tells us that composition of relations is associative.

Theorem 2.1: Let A, B, C and D be sets. Suppose R is a relation from A to B, S is a relation from B to C, and
T is a relation from C to D. Then

(RoS)oT=Ro (SoT).




Composition of Relations and Matrices

There is another way of finding R S. LetoMr and Ms denote respectively the matrix representations of the relations
RandS. Then

X yz
1 a bc d1 aOr 0 01
Mg = 10 0 0 yand Ms = bcl 0 1
31 00 O 1Jd Ol_ 1 OJ
4 11 0 1 0 01
00 0 O
Multiplying Mg and Ms we obtain the matrix
X yz
1 00 01
2 00 1
M=MMs=3"| 102
4 00 0

The nonzero entries in this matrix tell us which elements are related by R §. Thus M = MgrMs and Mg s have
the same nonzero entries.

2.4 TYPES OF RELATIONS

This section discusses a number of important types of relations defined on a set A.

Reflexive Relations

A relation R on a set A is reflexive if aRa for every a € A, that is, if (a, @) € R for every a € A. Thus R is not
reflexive if there exists a € A such that (a, a) Z R.

EXAMPLE 2.5 Consider the following five relations on the set A = {1, 2, 3, 4}

Rl == {(1! 1)! (1! 2)! (2! 3)! (1! 3)! (41 4)}

R2 = {(11 1)(11 2)1 (2! 1)! (2! 2)! (3! 3)! (4! 4)}

R3 = {(11 3)1 (2! 1)}

Rs = @, the empty relation

Rs = A X A, the universal relation

Determine which of the relations are reflexive.

Since A contains the four elements 1, 2, 3, and 4, a relation R on A is reflexive if it contains the four pairs (1, 1),

(2, 2), (3, 3), and (4, 4). Thus only R, and the universal relation Rs A A arexeflexive. Note that R, Rs, and
R4 are not reflexive since, for example, (2, 2) does not belong to any ofthem.

EXAMPLE 2.6 Consider the following five relations:

(1) Relation < (less than or equal) on the set Z of integers.

(2) Setinclusion < on a collection C of sets.

(3) Relation L (perpendicular) on the set L of lines in theplane.

(4) Relation Il (parallel) on the set L of lines in the plane.

(5) Relation| of divisibility on the set N of positive integers. (Recall x | y if there exists z such that xz = y.)

Determine which of the relations are reflexive.



The relation (3) is not reflexive since no line is perpendicular to itself. Also (4) is not reflexive since no line is
parallel to itself. The other relations are reflexive; that is, x < x for everyx € Z, A < A for any set A € C, and
n|n for every positive integer n € N.

Symmetric and Antisymmetric Relations

Arelation R on a set A is symmetric if whenever aRb then bRa, that is, if whenever (a, b) € Rthen (b,a) € R. Thus
R is not symmetric if there exists a, b € A such that (a,b) € Rbut (b, a) € R.

EXAMPLE 2.7

(a) Determine which of the relations in Example 2.5 are symmetric.
Riisnot symmetricsince (1,2) Ribug(2,1) / R;. ngs not symmetric since (1,3) Rz but (g 1) / Rs. The other
relations are symmetric.

(b) Determine which of the relations in Example 2.6 are symmetric.
The relation is symmetric since if line a is perpendicular to line b then b is perpendicular to a. Also, is symmefric
since if line ais parallel to line b then b is parallel to line a. The other relations are not symmetric. For example:

3<4butd/<3; {1,2}c {1,2, 3 butf{1,2, 3} /={1,2}; and 2|6but6/ | 2.

Arelation R on a set A is antisymmetric if whenever aRb and bRathena =b, thatis,ifa b and aRb then bjfa.
Thus R is not antisymmetric if there exist distinct elements a and b in A such that aRb and bRa.

EXAMPLE 2.8

(@) Determine which of the relations in Example 2.5 are antisymmetric.

R: is not antisymmetric since (1, 2) and (2, 1) belong to R,, but 1 2. Similarly, the universal relation Rs
is not antisymmetric. All the other relations are antisymmetric.

(b) Determine which of the relations in Example 2.6 are antisymmetric.

Therelation < isantisymmetricsince whenevera < bandb < athena = b. Setinclusion < isantisymmetric since
whenever A < Band B < Athen A = B. Also, divisibility on N is antisymmetric since whenever m | nand n |
m then m = n. (Note that divisibility on Z is not antisymmetric since 3 | —3 and —3 | 3 but 3 /= —3.) The
relations L and llare not antisymmetric.

Remark: The properties of being symmetric and being antisymmetric are not negatives of each other. For example, the
relation R = {(1, 3), (3, 1), (2, 3)} is neither symmetric nor antisymmetric. On the other hand, the relation R} =
{(1,1), (2, 2)} is both symmetric and antisymmetric.

Transitive Relations

Arelation R on a set A is transitive if whenever aRb and bRc then aRc, that is, if whenever (a, b), (b,c) € R
then (a, ¢) € R. Thus R is not transitive if there exist a,b, ¢ € R such that (a, b), (b,c) € R but (a,c) € R.



EXAMPLE 2.9

(@) Determine which of the relations in Example 2.5 are transitive.
The relation Rs is not transitive since (2, 1), (1, 3) € Rsbut (2, 3) € Rs. Allthe other relations are transitive.

(b) Determine which of the relations in Example 2.6 are transitive.

The relations , , ane ate trangitive, but certainly not . Also, since no line is parallel to itself, we can have a b
andb a, butp a. Thug isnot trgnsitive. (fWe note that the relation “is parallel or equal to” is a transitive relation
on the set L of lines in the plane.)

The property of transitivity can also be expressed in terms of the composition of relations. For a relation R on A
we did define R? = RoR and, more generally, R" = R"-1oR. Then we have the following result:

Theorem 2.2: Arelation R is transitive if and only if, for every n = 1, we have R" < R.

2.5 CLOSURE PROPERTIES

Consider a given set A and the collection of all relations on A. Let P be a property of such relations, such as being
symmetric or being transitive. A relation with property P will be called a P-relation. The P-closure of an arbitrary
relation R on A, written P (R), isa P-relation such that

RcP(R)<cS
for every P-relation S containing R. We will write
reflexive(R), symmetric(R), and transitive(R) for the reflexive, symmetric, and

transitive closures of R.
Generally speaking, P (R) need not exist. However, there is a general situation where P (R) will always exist.
Suppose P is a property such that there is at least one P-relation containing R and that the intersection of any P-
relations is again a P-relation. Then one can prove (Problem 2.16) that

P(R)=N(S| SisaP -relationand R < S)

Thus one can obtain P (R) from the “top-down,” that is, as the intersection of relations. However, one usually
wants to find P (R) from the “bottom-up,” that is, by adjoining elements to R to obtain P (R). This we do below.

Reflexive and Symmetric Closures

The next theorem tells us how to obtain easily the reflexive and symmetric closures of a relation. Here
Oa = {(a, a) | a € A} is the diagonal or equality relation on A.

Theorem 2.3: Let R be arelation on a set A. Then:
(i) R U Oa is the reflexive closure of R.
(i) R U R-!isthe symmetric closure of R.

In other words, reflexive(R) is obtained by simply adding to R those elements (a, a) in the diagonal which do not
already belong to R, and symmetric(R) is obtained by adding to R all pairs (b, a) whenever (a, b) belongs toR.

EXAMPLE?2.10 ConsidertherelationR = {(1, 1), (1, 3),(2,4),(3,1),(3,3),(4, 3)}onthesetA = {1, 2, 3,4}.
The

reflexive(R) = R U {(2, 2), (4, 4)} and symmetric(R) = R U {(4, 2), (3, 4)}



Transitive Closure

Let R be arelation on a set A. Recall that RZ = RoR and R" = R"-1oR. We define
R*=; R
i=1

The following theorem applies:

Theorem 2.4: R* is the transitive closure of R.
Suppose A is a finite set with n elements. We show in Chapter 8 on graphs that

R*=RURZU...UR"

This gives us the following theorem:

Theorem 2.5: Let R be a relation on a set A with n elements. Then

transitive (R) =R U R2U .. UR"

EXAMPLE 2.11 Consider the relation R = {(1, 2), (2, 3), (3, 3)} on A = {1, 2, 3}. Then:
R? = RoR = {(1, 3), (2, 3), (3, 3)} and R® = R%oR = {(1, 3), (2, 3), (3, 3)}
Accordingly,
transitive (R) = {(1, 2), (2, 3), (3, 3), (1, 3)}

2.6 EQUIVALENCE RELATIONS

Consider a nonempty set S. A relation R on S is an equivalence relation if R is reflexive, symmetric, and
transitive. That is, R is an equivalence relation on S if it has the following three properties:

(1) For every a € S, aRa. (2) If aRb, then bRa. (3) If aRb and bRc, then aRc.

The general idea behind an equivalence relation is that it is a classification of objects which are in some way
“alike.” In fact, the relation “="" of equality on any set S is an equivalence relation; that is:

(1) a=aforeverya €8S. (2) Ifa=Db,thenb=a. (@) Ifa=b,b=c,thena=rc.

Other equivalence relations follow.

EXAMPLE 2.12
(@) Let L be the set of lines and let T be the set of triangles in the Euclidean plane.

(i) The relation “is parallel to or identical to” is an equivalence relation on L.

(i) The relations of congruence and similarity are equivalence relations on T.

(b) Therelation < of set inclusion is not an equivalence relation. It is reflexive and transitive, but it is not
symmetric since A < B does not imply B < A.



(c) Let m be a fixed positive integer. Two integers a and b are said to be congruent modulo m,written
a = b (mod m)
if m divides a — b. For example, for the modulus m = 4, we have

11 = 3 (mod 4) and 22 = 6 (mod 4)

since 4 divides 11 —3 =8and 4divides 22 _ 6= 16. Thisrelation of congruence modulo m is an important
equivalence relation.

Equivalence Relations and Partitions
This subsection explores the relationship between equivalence relations and partitions on a non-empty set S.
Recall first that a partition P of S is a collection {Ai} of nonempty subsets of S with the following two properties:

(1) Each a € S belongs to some A;.
(2) IfA /= Aj then Ai N Aj = .
In other words, a partition P of S is a subdivision of S into disjoint nonempty sets. (See Section 1.7.)

Suppose R is an equivalence relation on a set S. For each a e S, let [a] denote the set of elements of S to
which ais related under R; that is:

[a] ={x| (@ x)eR}

We call [a] the equivalence class of a in S; any b € [a] is called a representative of the equivalence class.

The collection of all equivalence classes of elements of S under an equivalence relation R is denoted by S/R, that
is,

SIR ={[a] | a € S}

It is called the quotient set of S by R. The fundamental property of a quotient set is contained in the following
theorem.

Theorem 2.6: Let R be an equivalence relation on a set S. Then S/R is a partition of S. Specifically:
(i) Foreachains§, wehave a € [a].

(i) [a]l=[b] ifand only if (a, b) € R.
(i) If [a] /= [b], then [a] and [b] are disjoint.

Conversely, given a partition A{of }he set S, there is an equivalence relation R on S such that the sets A; are
the equivalence classes.

This important theorem will be proved in Problem 2.17.

EXAMPLE 2.13

(a) Consider the relation R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)} on S = {1, 2, 3}.
One can show that R is reflexive, symmetric, and transitive, that is, that R is an equivalence relation. Also:
[1] = {1, 2}, [2]= {1, 2}, [3]= {3}

Observethat 1 [ ]= B pndthatS/R = {[L ]9 i}}a partition of S. One can choose either {, 3pr 2, 3 §s
a set of representatives of the equivalence classes.



(b) Let Rs be the relation of congruence modulo 5 on the set Z of integers denoted by

X = y (mod 5)

This means that the difference x y is divisible by 5. Then Rs is an equivalence relation on Z. The quotient set Z/Rs
contains the following five equivalence classes:

Ao={..,—10, -5,0,5, 10,.. .}

Ar={...,—9,—-4,1,6,11,.. .}

A ={...,—8,-3,2,7,12,.. .}

A;=1{...,—7,—-2,3,8,13,.. .}

Ar=1{...,—6,—1,4,9,14,.. .}

Any integer x, uniquely expressed in the form x 5q r=wherg.0 r <5, is a member of the equivalence class A,
where r is the remainder. As expected, Z is the disjoint union of equivalence classes A1, Az, As, As. Usually one
chooses {0, 1,2, 3,4} or {—2, —1, 0, 1, 2} as a set of representatives of the equivalence classes.

2.7 PARTIAL ORDERING RELATIONS

Arelation R on a set S is called a partial ordering or a partial order of S if R is reflexive, antisymmetric, and
transitive. A set S together with a partial ordering R is called a partially ordered set or poset. Partially ordered sets
will be studied in more detail in Chapter 14, so here we simply give some examples.

EXAMPLE 2.14

(@) The relation ef set inclusion is a partial ordering on any collection of sets since set inclusion has the three
desired properties. That is,

(1) A < Aforany setA.
(2) IfA< BandB < A, then A =B.
(3) IfAcBandB < C,thenA < C.

(b) The relation aa the set R of real numbers is reflexive, antisymmetric, and transitive. Thus is a partial ordering
onR.

(c) The relation “a divides b,” written a | b, is a partial ordering on the set N of positive integers. However, “a
divides b is not a partial ordering on the set Z of integers since a | b and b | a need not imply a = b. For
example, 3| —3and —=3|3but3 /= -3.

2.8 n-ARY RELATIONS

All the relations discussed above were binary relations. By an n-ary relation, we mean a set of ordered n-tuples.
For any set S, a subset of the product set S" is called an n-ary relation on S. In particular, a subset of S% is called a
ternary relation on S.

EXAMPLE 2.15

(@) LetL bealineinthe plane. Then “betweenness” is a ternary relation R on the points of L; that is, (a, b,c) ¢ R
if b lies between aand c on L.

(b) Theequationx? yy? z3 1determinesaternaryrelation T on the set R of real numbers. Thatis, atriple (x,
y, z) belongs to T if (x, y, z) satisfies the equation, which means (x, y, ) is the coordinates of a point in R®

on the sphere S with radius 1 and center at the origin O = (0, 0, 0).



Functions

Suppose that to each element of a set A we assign a unique element of a set B; the collection of such assignments
is called a function from A into B. The set A is called the domain of the function, and the set B is called the target
set or codomain.

Functions are ordinarily denoted by symbols. For example, let f denote a function from A into B. Then we write

f:A— B

which isread: “fis a function from A into B,” or “f takes (or maps) Ainto B.” Ifa A, then f(a) (read: “fof a”)
denotes the unique element of B which f assigns to a; it is called the image of a under f, or the value of f at a.
The set of all image values is called the range or image of f. The image of ¥ A B is denoted by Ran(f),
Im(f) or f(A).

Frequently, a function can be expressed by means of a mathematical formula. For example, consider the function
which sends each real number into its square. We may describe this function by writing

f(x) =x> or x>—x?> or y=x?

In the first notation, x is called a variable and the letter f denotes the function. In the second notation, the barred
arrow is read “goes into.” In the last notation, x is called the independent variable and y is called the dependent
variable since the value of y will depend on the value of x

Fig. 3-1

EXAMPLE 3.1

(@) Consider the function f(x) = x3, i.e., f assigns to each real number its cube. Then the image of 2 is 8,
and so we may write f(2) = 8.

(b) Figure 3-1 defines a function f from A = {a, b, c,d} into B = {r,s, t, u} in the obvious way. Here
f(a) =s, f(b) =u, f(c)=r, f(d)=s

The image of f is the set of image valges, r, §, u . Note that t does not belong to the image of f because t is not
the image of any element under f.

(c) Let A be any set. The function from A into A which assigns to each element in A the element itself is
called the identity function on A and it is usually denoted by 1, or simply 1. In other words, for every a

€A,
1a(@) = a.

(d) Suppose S is a subset of A, that is, suppose S < A. The inclusion map or embedding of S into A, denoted by
i: S >~ Ais the function such that, for every x € S,

i(x) = x
Therestriction ofanyfunctionf: A — B, denoted by f|sisthe functionfrom Sinto Bsuchthat, foranyx € S,

Fls() = f(x)



Functions as Relations

Thereisanother pointofview from which functionsmay be considered. Firstofall, every function £.A B
gives rise to a relation from A to B called the graph of f and defined by

Graph of f = {(a,b) | a€ A, b = f(a)}

Two functionsf A Band.g A B are defined to be equal, written ¥ g, itf(a) g(a) for every a
A; that is, if they have the same graph. Accordingly, we do not distinguish between a function and its graph.
Now, suchagraphrelation hasthe property thateach ain Abelongstoaunique ordered pair (a, b) intherelation.

Onthe other hand, any relation f from A to B that has this property givesrise toafunctionf: A — B, where
f(a) = b for each (a, b) in f. Consequently, one may equivalently define a function as follows:

Definition: Afynction f A B isarelation from AtoB (i.e., asubsgt of A B) such thateacha A belongs to
a unique ordered pair (a, b) in f.

Although we do not distinguish between a function and its graph, we will still use the terminology “graph of f”
when referring to f as a set of ordered pairs. Moreover, since the graph of f is a relation, we can draw its picture
as was done for relations in general, and this pictorial representation is itself sometimes called the graph of f.
Also, the defining condition of a function, that eagh a A belongs to a unique pair (a, b) in f, isequivalent to the
geometrical condition of each vertical line intersecting the graph in exactly one point.

EXAMPLE 3.2

(@) Letf: A — B bethe function defined in Example 3.1 (b). Then the graph of f is as follows:
{(ay S)1 (b, u)'l (Ci r)’ (d’ S)}

(b) Consider the following three relations on the set A = {1, 2,3}:
f=1{(1,3),(23), (1)} g=1{(1,2), @D} h={(173),(21),(12), @1}

fisafunction from A into A since each member of A appears as the first coordinate in exactly one ordered pair
inf; here f (1) 3,f(2) 3,andf (3) 1. ¢gdsnota function from A into A since 2 A is not the firstcoordinate
of any pairin gand so g does notassign anyimageto 2. Alsohisnotafunction from Ainto

A since 1 € A appears as the first coordinate of two distinct ordered pairs in h, (1, 3) and (1, 2). If his to be a
function it cannot assign both 3 and 2 to the element 1 € A.

(c) Byareal polynomial function, we mean a function f: R — R of the form
f(x) = anX" + ap-1X"1 + - -+ + ax + ao

where the a; are real numbers. Since R is an infinite set, it would be impossible to plot each point of the graph.
However, thegraph of suchafunction can beapproximated by firstplotting some ofitspointsandthen drawing a
smooth curve through these points. The points are usually obtained from a table where various values are
assigned to x and the corresponding values of f(x) are computed. Figure 3-2 illustrates this

technigue using the function f(x) = x2 — 2x — 3.

Graph of f(x) = 22 —22 -3



Fig. 3-2

Composition Function

Consider functionsf: A — Bandg: B — C; thatis, where the codomain of fis the domain of g. Thenwe
may define a new function from A to C, called the composition of f and g and written goT, as follows:

(gof)(a) = g(f(a))
That is, we find the image of a under f and then find the image of f(a) under g. This definition is not really
new. If we viewfand g as relations, then this function is the same as the composition of f and g as relations (see

Section 2.6) except that here we use the functional notation gof for the composition of f and g instead of the
notation f og which was used for relations.

Consider any function f: A — B. Then

fol/.\:f and 150f =Ff

where 1, and 1g are the identity functions on A and B, respectively.

3.1 ONE-TO-ONE, ONTO, AND INVERTIBLE FUNCTIONS

A function f: A — B is said to be one-to-one (written 1-1) if different elements in the domain A have distinct
images. Another way of saying the same thing is that f is one-to-one if f(a) = f(a)) implies a = a’.

Afunction f_A B is said to be an onto function if each element of B is the image of some element of A. In
other words,.£ A B is onto if the image of f is the entire codomain, i.e., if fA) B. In such a case we say
that f is a function from A onto B or that f maps A onto B.

Afunction f-A Bisinvertibleifitsinverserelation f-tisafunction from BtoA. Ingeneral, theinverse relation
-1 maynot be a function. The following theorem gives simple criteria which tells us when it is.

Theorem 3.1: A function f: A — B is invertible if and only if f is both one-to-one and onto.

If f_A B is one-to-one and onto, then f is called a one-to-one correspondence between A and B. This
terminology comes from the fact that each element of A will then correspond to a unique element of B and vice
versa.

Some texts use the terms injective for a one-to-one function, surjective for an onto function, and bijective for a
one-to-one correspondence.

EXAMPLE 3.3 Consider the functions,f; A - B.f; B C.f; C D and.f; D E defined by the
diagram of Fig. 3-3. Now T, is one-to-one since no element of B is the image of more than one element of A.

Similarly, ¥, is one-to-one. However, neither 3 nor 4 is one-to-one since f5(r) = f3(u) and fs(v) = F4(w)

Fig. 3-3

As far as being onto is concerned, T, and f3 are both onto functions since every element of C is the image under
T, of some element of B and every element of D is the image under f; of some element of C, f,(B) = C and
T3(C) = D. On the other hand, f; is not onto since 3 € B is not the image under f, of any element of A. and T,



is not onto since x € E is not the image under T4 of any element of D.
Thus F; is one-to-one but not onto, f; is onto but not one-to-one and T, is neither one-to-one nor onto.
However, f; is both one-to-one and onto, i.e., is a one-to-one correspondence between A and B. Hence f, is

invertible and f,”!is a function from C to B.

Geometrical Characterization of One-to-One and Onto Functions
Consider now functions of the form f R—  R. Since the graphs of such functions may be plot- ted in
the Cartesian plane R? and since functions may be identified with their graphs, we might wonder
whether the concepts of being one-to-one and onto have some geometrical meaning. The answer is yes.
Specifically:

(1) f:R — Risone-to-oneifeach horizontal line intersects the graph of fin at most one point.

(2) f:R — Risan onto function if each horizontal line intersects the graph of f at one or more points.
Accordingly, if f is both one-to-one and onto, i.e. invertible, then each horizontal line will intersect the graph

of
f at exactly one point.

EXAMPLE 3.4 Consider the following four functions from R into R:

fi(x) =x3, HE)=2% FfHKx) =x*-2x2-5x+6, F(x)=x3

The graphs of these functions appear in Fig. 3-4. Observe that there are horizontal lines which intersect the graph
of f, twice and there are horizontal lines which do not intersect the graph of f; at all; hence F; is neither one-
to-one nor onto. Similarly, ¥, is one-to-one but not onto, f3 is onto but not one-to-one and f; is both one-to-one
and onto. The inverse of f, is the cube root function, i.e., f4’1(§) = *x.

_.'-/ N

fr(x) = 22 falz) = 2= falx) = 23 — 222 — 5z + 6 fola) = a3

Fig. 3-4

Permutations

An invertible (bijective) function c—X X is called a permutation on X. The composition and inverses
of permutations on X and the identity function on X are also permutations on X.

Suppose X = {1, 2,..., n}. Then a permutation ¢ on X is freguently denoted by

- 1 2 3 -+'n

o= 1 {7 L ..,
where j; o(i). The set of all such permutations is denoted by Sy, and thecearen .n(n . 1) 321of
them. For example,

)2 b2
12345 6 123456

462873 Y3175

are permutations in Se, and there are 6! = 720 of them. Sometimes, we only write the second line of the
permutation, that is, we denote the above permutations by writing o = 462513 and r = 643125.



3.2 MATHEMATICAL FUNCTIONS, EXPONENTIAL AND LOGARITHMIC FUNCTIONS

This section presents various mathematical functions which appear often in the analysis of algorithms, and in
computer science in general, together with their notation. We also discuss the exponential and logarithmic
functions, and their relationship.

Floor and Ceiling Functions

Let x be any real number. Then x lies between two integers called the floor and the ceiling of X. Specifically,

\x], called the floor of x, denotes the greatest integer that does not exceed x.

Jx], called the ceiling of x, denotes the least integer that is not less than x. If x is

itself an integer, then \x] = Jx]; otherwise \x]+ 1 = Jx]. For example,

Vd Vd

K3.14] =3, 5 =2, \—8.5] = -9, \7] =7, \—4] = —4,
o -
J3.14] = 4, 5 =3, J-85]1=-8, J71=7, J-4]=-4

Integer and Absolute Value Functions

Let x be any real number. The integer value of x, written INT(x), converts x into an integer by deleting
(truncating) the fractional part of the number. Thus

.
IN(F(3.14) =3, INT( 5) =2, INT(—85)=-8, INT(7)=7
Observe that INT(x) = \x] or INT(x) = Jx] according to whether x is positive or negative.

The absolute value of the real number x, written ABS(x) or |x|, is defined as the greater of x or —x. Hence

AhBS(O) = 0, and, for x /= 0, ABS(x) = x or ABS(X) = —X, depending on whether x is positive or negative.
Thu

| - 15|=15, |7|=7, |—3.33|=3.33, [4.44|=4.44, |-0.075/= 0.075

We note that |x|=| — x| and, for x /= 0, [x] is positive.



DISCRETE MATHEMATICS
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BASIC COUNTING PRINCIPLES

There are two basic counting principles used throughout this chapter. The first one involves addition and the
second one multiplication.

Sum Rule Principle:

Suppose some event E can occur in m ways and a second event F can occur in n ways, and suppose both
events cannot occur simultaneously. Then E or F can occur in m + n ways.

Product Rule Principle:

Suppose there is an event E which can occur in m ways and, independent of this event, there is a second event
F which can occur in n ways. Then combinations of E and F can occur in mn ways.

The above principles can be extended to three or more events. That is, suppose an event E4 can occur in nq

ways, a second event E, can occur in n, ways, and, following E,; a third event E3 can occur in ny ways, and so
on. Then:

Sum Rule: If no two events can occur at the same time, then one of the events can occur in:
ny+ n, + n3+ - - ways.
Product Rule: If the events occur one after the other, then all the events can occur in the order indicated in:

nqy - ny- n3- .. ways.
EXAMPLE Suppose a college has 3 different history courses, 4 different literature courses, and 2 different
sociology courses.
(@ The number m of waysa student can choose one of each kind of coursesis:

m = 3(4)(2) = 24

(b) The number n of ways a student can choose just one of the courses is:
n=3+4+2=9

There is a set theoretical interpretation of the above two principles. Specifically, suppose n(A) denotes the
number of elements in a set A. Then:

(1) Sum Rule Principle: Suppose A and B are disjoint sets. Then

n(A U B) = n(A) + n(B)

(2) Product Rule Principle: Let A X B be the Cartesian product of sets A and B. Then



n(A X B) = n(A) - n(B)

MATHEMATICAL FUNCTIONS

We discuss two important mathematical functions frequently used in combinatorics.

Factorial Function

The product of the positive integers from 1 to n inclusive is denoted by n!, read “n factorial.” Namely:
nl=1-2-3-...-(n=2)(n-1)n=n(n—1)(n—2)-... -3-:2-1

Accordingly, 1!= 1andn!= n(n — I)!. Itis also convenient to define 0!= 1.

EXAMPLE .2

@3'=3-2-1=64=4-3-2-1=2405=5".4l=5(4) = 120.

() 12:11-10 _12-11-10-9! 12!

ag%, more generally, - 2- 1 3:2:1-9! 319!

nn—=1)---(n—r+1) nn=1)---(n—r+1)n—r) n!

rfr=1)---3-2-1 r(r=1)-+-3-2-1-(n—r)! r'(n —r)!

(e) For large n, one uses Stirling’s approximation (where e = 2.7128...):

N
n'=2nnn"e-"
Binomial Coefficients
-z
The symbol , read “nCr” or “n Choose r,” where r and n are positive integers with r < n, is defined as
follows: r “n nl
. or equivalentl = '
n nn—-1)-(n—r+1) f y
r rir—1)...3-2-1 r ri(n —r)!

Note that n — g? — r) = r. This yields the following important relation.
- - X -2 )3
n n . n n
Lemma .1: = or equivalently, = wherea + b=n.

n—r r a b

Motivated by that fact that we defined 0!= 1, we define:

5 -
- 0 0!
n_nl _1 ang =— =1



0 0'n! 0 oro!

EXAMPLE 3
-2 -2 -2

(@) 8 =M=28; 9 :9-8-7-6:126; 12 :12‘11'10-9-8:792.
2 2-1 4 4-3-2-1 5 5-4:3-2-1

n . )
Note that has exactly r factors in both the numerator and the denominator.
r
-1 OZ
(b) Suppose we want to compute 2 There will be 7 factors in both the numerator and the denominator.

However, 10 — 7 = 3. Thus, we use Lemma 5.1 to compute:

SO T
10 _ 10 =10-9-8=120
7 3 3-2-1

Binomial Coefﬁcientzs and Pascal’s Triangle

n L . . . .
The numbers are called binomial coefficients, since they appear as the coefficients in the expansion of
r

(a + b)". Specifically:

Theorem (Binomial Theorem) 2: (o + b)" = zn o kpk
k=0

The coefficients of the successive powers of a + b can be arranged in a triangular array of numbers, called
Pascal’striangle, aspictured in Fig. 5-1. ThenumbersinPascal’s triangle have the following interesting properties:

() The first and last number in each row is 1.
(ii) Every other number can be obtained by adding the two numbers appearing above it. For example:

10=4+6, 15=5+10, 20 =10+ 10.

Since these numbers are binomial coefficients, we state the above property formally.



(@a+b0 = 1 1

(a+b)l = a + b 1 1
(a+b)2 = a2+ 2ab + b2 1 2 1
(@a+b® = a® + 3a2 + 3ab2 + b3 1 3 3 1
(e +b)y = at + 4a’h + 6a?b? + 4dabd + b* 1 : 6 4 1
(a+b)5 = &% + bath + 10a3b2 + 10a2b® + bBabt + b3 1. & @ 10 5 1
(a+b)® = af + 6a5h + 15atb? + 20a3b% + 15a2b4 + 6ad5 + b® 1 6 @ @ 15 6 1

I
M
'
M

Theorem 3:

5.1 PERMUTATIONS

Any arrangement of a set of n objects in a given order is called a permutation of the object (taken all at a time).
Any arrangement of any r & of these objects in a given order is called an “r-permutation” or “a permutation of
the n objects taken r at a time.” Consider, for example, the set of letters A, B, C, D. Then:

(i) BDCA, DCBA, and ACDB are permutations of the four letters (taken all at atime).
(i) BAD, ACB, DBC are permutations of the four letters taken three at atime.
(iii) AD, BC, CA are permutations of the four letters taken two at a time.

We usually are interested in the number of such permutations without listing them.
The number of permutations of n objects taken r at a time will be denoted by

P (n, r) (other texts may use ,P,, P, or (n),).

The following theorem applies.

Theorem4: P(n,r) =nin—1)(n—2)--- (h—r+1) :”!—
(n—r)!

We emphasize that there are r factorsinn(n — 1)(n — 2) --- (n — r + 1).

EXAMPLE 4 Find the number m of permutations of six objects, say, A, B, C, D, E, F, taken three at a time. In
other words, find the number of “three-letter words” using only the given six letters without repetition.
Let us represent the general three-letter word by the following three positions:

7 7

The first letter can be chosen in 6 ways; following this the second letter can be chosen in 5 ways; and, finally, the
third letter can be chosen in 4 ways. Write each number in its appropriate position as follows:

5,54

By the Product Rule thereare m 6 5 4 120 possible three-letter words without repetition from the six letters.
Namely, there are 120 permutatiorTs of 6 objects taken 3 at a time. This agrees with the formula in Theorem 5.4:

P(6,3)=6-5-4=120

In fact, Theorem 4 is proven in the same way as we did for this particular case.

Consider now the special case of P (n, r) when r = n. We get the following result.



Corollary 5: There are n! permutations of n objects (taken all at a time).

For example, there are 3! = 6 permutations of the three letters A, B, C. These are:

ABC, ACB, BAC, BCA, CAB, CBA.

Permutations with Repetitions

Frequently we want to know the number of permutations of a multiset, that is, a set of objects some of which
are alike. We will let

P(n; ny ny, ..., Nn.)

denote the number of permutations of n objects of which n, are alike, n, are alike, .. ., n, are alike. The general

formula follows: |
n'
Theorem6: P(n; n, n,..., n)=

12
r ni! ny!... n.!

We indicate the proof of the above theorem by a particular example. Suppose we want to form all possible

five-letter “words” using the letters from the word “BABBY.” Now there are 5! = 120 permutations of the objects
B1, A, By, B3 Y, where the three B’s are distinguished. Observe that the following six permutations

B1B, B3AY, ByBy BsAY, B3By BoAY, B1B3 B,AY, BoB3 B1AY, B3B, BiAY

produce the same word when the subscripts are removed. The 6 comes from the fact that there are 3 3-2-1 6
different ways of placing the three B’s in the first three positions in the permutation. This is true fh=each seFof
three positions in which the B’s can appear. Accordingly, the number of different five-letter words that can be
formed using the letters from the word “BABBY” is:

5
P(5:3) 7

=g =2

EXAMPLE 5 Find the number m of seven-letter words that can be formed using the letters of the word
“BENZENE.”

We seek the number of permutations of 7 objects of which 3 are alike (the three E’s), and 2 are alike (the two
N’s). By Theorem 5.6,

7!
m_p(32 T _1:6:54:32:1 .

- 3.2-1-2-1
312!

Ordered Samples

Many problems are concerned with choosing an element from a set S, say, with n elements. When we choose
one element after another, say, r times, we call the choice an ordered sample of size r. We consider two cases.

(1) Sampling with replacement

Here the element is replaced in the set S before the next element is chosen. Thus, each time there are n ways
to choose an element (repetitions are allowed). The Product rule tells us that the number of such samplesis:

n-n-n---n-n(rfactors) = n"



(2) Sampling without replacement

Here the element is not replaced in the set S before the next element is chosen. Thus, there is no repetition
in the ordered sample. Such a sample is simply an r-permutation. Thus the number of such samples is:

Pnr)=n(n—1)(n—2) - (n—r+1) =——>——
(n—r)!

EXAMPLE 6 Three cards are chosen one after the other from a 52-card deck. Find the number m of ways this
can be done: (a) with replacement; (b) without replacement.

(a) Each card can be chosen in 52 ways. Thus m = 52(52)(52) = 140 608.

(b) Here there is no replacement. Thus the first card can be chosen in 52 ways, the second in 51 ways, and
the third in 50 ways. Therefore:

m = P (52, 3) = 52(51)(50) = 132 600

COMBINATIONS

Let S be a set with n elements. A combination of these n elements taken r at a time is any selection of r of
the elements where order does not count. Such a selection is called an r-combination; it is simply a subset of S
with r elements. The number of such combinations will be denoted by

C(n, r) (other texts may use ,C,, C, ,, or C}).

Before we give the general formula for C(n, r), we consider a special case.

EXAMPLE 7 Find the number of combinations of 4 objects, A, B, C, D, taken 3 at a time.
Each combination of three objects determines 3!= 6 permutations of the objects as follows:

ABC: ABC, ACB, BAC, BCA, CAB, C(CBA ABD:
ABD, ADB, BAD, BDA, DAB, DBA ACD: ACD, ADC,

CAD, CDA, DAC, DCA BCD : BDC, BDC, CBD, CDB,
DBC, DCB

Thus the number of combinations multiplied by 3! gives us the number of permutations; that is,

C(4,3) -3!'=P(4,3) or C((43) = P (4,3)

3!

ButP (4,3) =4 -3 2= 24and3!= 6; hence C(4, 3) = 4 as noted above.
As indicated above, any combination of n objects taken r at a time determines r! permutations of the objects
in the combination; that is,

P(n,r)=r'C(n,r)

Accordingly, we obtain the following formula for C(n, r) which we formally state as a theorem.



P(n,r n!
Theorem 7: C(n, r) = (n, 1) =

rl ri(n —r)!
- nz n!
Recall that the binomial coefficient was defined to be —— ——; hence
r ri(n —r)!
D
n
C(r, n)=
- X

n
We shall use C(n, r) and interchangeably.

EXAMPLE 8 A farmer buys 3 cows, 2 pigs, and 4 hens from a man who has 6 cows, 5 pigs, and 8 hens. Find
the number m of choices that the farmer has.
The farmer can choose the cows in C(6, 3) ways, the pigs in C(5, 2) ways, and the hens in C(8, 4) ways.
Thus the number m of choigs f%lm@
6 5 8

_6:54 54 8765 0o o

3 2 4 3:2-12-14-3-2-1

THE PIGEONHOLE PRINCIPLE
Many results in combinational theory come from the following almost obvious statement.

Pigeonhole Principle: If n pigeonholes are occupied by n + 1 or more pigeons, then at least one pigeonhole is
occupied by more than one pigeon.

This principle can be applied to many problems where we want to show that a given situation can occur.

EXAMPLE 9

(@) Suppose a department contains 13 professors, then two of the professors (pigeons) were born in the same
month (pigeonholes).

(b) Find the minimum number of elements that one needs to take from the setS = {1, 2, 3,..., 9jto be sure
that two of the numbers add up to 10.
Here the pigeonholes are the five sets {1, 9}, {2, 8}, {3, 7}, {4, 6}, {5}. Thus any choice of six elements
(pigeons) of S will guarantee that two of the numbers add up to ten.

The Pigeonhole Principle is generalized as follows.

Generalized Pigeonhole Principle: If n pigeonholes are occupied by kn + 1 or more pigeons, where kis a
positive integer, then at least one pigeonhole is occupied by kK + 1 or more pigeons.

EXAMPLE 10 Find the minimum number of students in a class to be sure that three of them are born in the
same month.

Here the n — 12 months are the pigeonholes, and k + 1 — 3sok = 2. Henceamong any kn 1 — 25
students (pigeons), three of them are born in the same month.



THE INCLUSION-EXCLUSION PRINCIPLE
Let A and B be any finite sets. Recall Theorem 1.9 which tells us:

n(A U B)= n(A) + n(B) — n(AN B)

In other words, to find the number n(A B) of elements in the union of A and B, we add n(A) and n(B) and then
we subtract n(A B); that is, we “include” n(A) and n(B), and we “exclude” n(A B). This follows from the fact
that, when we add n(A) and n(B), we have counted the elements of (A B) twice. 1

The above principle holds for any number of sets. We first state it for three sets.

Theorem 8: For any finite sets A, B, C we have
nfAU BU C)=n(A)+ n(B)+ n(C) — n(AN B)—n(ANC)—nBNC)+ n(AN BN (C)
That is, we “include” n(A), n(B), n(C), we “exclude” n(A N B), n(A N C), n(B N C), and finally “include”

n(AN BN Q).

EXAMPLE 11 Find the number of mathematics students at a college taking at least one of the languages
French, German, and Russian, given the following data:

65 study French, 20 study French and German,

45 study German, 25 study French and Russian, 8 study all three

languages. 42 study Russian, 15 study German and

Russian,

We want to find n(F y G y R) where F, G, and R denote the sets of students studying French, German, and
Russian, respectively.
By the Inclusion—Exclusion Principle,

n(FU GU R) = n(F) + n(G) + n(R) — n(FN G)— n(FNR)— n(GN R)+ n(FN GN R)
=65+45+42—-20—-25—- 15+ 8= 100

Namely, 100 students study at least one of the three languages.

Now, suppose we have any finite number of finite sets, say, Ay, A, ..., An. Let sy be the sum of the
cardinalities
n(A,-l N A,’2 NN AiK)

of all possible k-tuple intersections of the given m sets. Then we have the following general Inclusion—Exclusion
Principle.

Theorem .9: n(A{U AU - UA,) =8 — S;+ 83— -+ + (—1)" 15,

Solved Questions

1.Suppose a bookcase shelf has 5 History texts, 3 Sociology texts, 6 Anthropology texts, and 4
Psychology texts. Find the number n of ways a student can choose:

(@) one of the texts; (b) one of each type of text.

(@) Herethe Sum Rule applies; hence,n =5+ 3 +6 + 4 = 18.
(b) Here the Product Rule applies; hence,n =5 -3 - 6 - 4 = 360.



2.A history class contains 8 male students and 6 female students. Find the number n of ways that the class can
elect: (a) 1 class representative; (b) 2 class representatives, 1 male and 1 female; (c) 1 president and 1 vice
president.

(b) Here the Sum Rule is used; hence, n = 8 + 6 =14.
(c) Here the Product Rule is used; hence, n = 8 - 6 =48.
(d) There are 14 ways to elect the president, and then 13 ways to elect the vice president. Thusn = 14 - 13 = 182.

3.There are four bus lines between A and B, and three bus lines between B and C. Find the number m of ways that a man can
travel by bus: (a) from A to C by way of B; (b) roundtrip from A to C by way of B; (c) roundtrip from A to C by way of B but
without using a bus line more than once.

(e) There are 4 ways to go from A to B and 3 ways from Bto C; hencen =4 - 3 = 12.

(f) There are 12 ways to go from A to C by way of B, and 12 ways to return. Thusn = 12 - 12 = 144.
(9) The man will travel from A to B to C to B to A. Enter these letters with connecting arrows as follows:
A—-B—-C—B—-A

The man can travel four ways from A to B and three ways from B to C, but he can only travel two ways from C to
B and three ways from B to A since he does not want to use a bus line more than once. Enter these numbers
above the corresponding arrows as follows:

4 3 2 3
A—-B—-C—-B—A

Thus, by the ProductRule,n=4-3 -2 .3 =72.

3.State the essential difference between permutations and combinations, with examples.

Order counts with permutations, such as words, sitting in a row, and electing a president, vice president, and
treasurer. Order does not count with combinations, such as committees and teams (without counting positions).
The product rule is usually used with permutations, since the choice for each of the ordered positions may be viewed
as asequence of events.

4. Find: (a) P (7, 3); (b) P (14, 2).
Recall P (n, r) has r factors beginning with n.
(a)P(7,3)=7-6-5=210; (b)P(14,2) = 14 - 13 = 182.
5.Find the number m of ways that 7 people can arrange themselves:

(@) In arow of chairs; (b) Around a circular table.

(@ Herem =P (7,7) = 7! ways.
(b) One person can sit at any place at the table. The other 6 people can arrange themselves in 6! ways around the
table; that is m = 6.

This is an example of a circular permutation. In general, n objects can be arranged in a circle in (n — 1)! ways.
6.Find the number n of distinct permutations that can be formed from all the letters of each word:
(b) THOSE; (b) UNUSUAL; (c) SOCIOLOGICAL.
This problem concerns permutations with repetitions.

(@ n = 5!= 120, since there are 5 letters and no repetitions.



7.A class contains 10 students with 6 men and 4 women. Find the number n of ways to:

(c) Select a 4-member committee from the students.

(d) Select a 4-member committee with 2 men and 2 women.

(e) Elect a president, vice president, and treasurer.

(a) This concerns combinations, not permutations, since order does not count in a committee. There are “10 choose
4” such committees. That is:

n=C(10, 4) =

>
10 10:9:8-7
= =210

4 4.3.2:1

(b) The 2 men can be chosen from the 6 men in C(6, 2) ways, and the 2 women can be chosen from the 4 women in
C(4, 2) ways. Thus, by the Product Rule:

3.3
64 6.5 4.3
n= = , = 15(6) = 90

2 2 21 21
(c) This concerns permutations, not combinations, since order does count. Thus,
n="P(6,3)=6-5-4=120
8.A box contains 8 blue socks and 6 red socks. Find the number of ways two socks can be drawn from the box
if:
(f) They can be any color. (b) They must be the same color.
(@) There are “14 choose 2” ways to select 2 of ttle lisocks. Thus:

14°  14.13

n=C(14, 2) = 91

2 2-1

(b) There are C(8, 2) = 28 ways to choose 2 of the 8 blue socks, and C(6, 2) = 15 ways to choose 2 of the 4 red
socks. By the Sum Rule, n = 28 + 15 = 43.

9.Find the number m of committees of 5 with a given chairperson that can be selected from 12people.

The chairperson can be chosen in 12 ways and, following this, the other 4 on the committee can be chosen from
the 11 remaining in C(11, 4) ways. Thus m = 12-:C(11, 4) = 12-330 = 3960.

10.Find the minimum number n of integers to be selected from S 1, 2,..., 9so that: (a) The sum of
two of the n integers is even. (b) The difference of two of the n integersﬂs{S.

(g9) The sum of two even integers or of two odd integers is even. Consider the subsets {1, 3, 5, 7, 9} and {2, 4, 6, 8}
of S as pigeonholes. Hence n = 3.

(h) Considerthe five subsets {1, 6}, {2, 7}, {3, 8}, {4, 9}, {5} of S as pigeonholes. Thenn — 6 will guarantee thattwo
integers will belong to one of the subsets and their difference will be 5.

11.Find the minimum number of students needed to guarantee that five of them belong to the same class
(Freshman, Sophomore, Junior, Senior).

Here the n = 4 classes are the pigeonholesand k+ 1 = 5so k = 4. Thus among any kn + 1 = 17 students (pigeons),
five of them belong to the same class.

12.Let L be a list (not necessarily in alphabetical order) of the 26 letters in the English alphabet (which
consists of 5 vowels, A, E, I, O, U, and 21 consonants).

(i) Show that L has a sublist consisting of four or more consecutive consonants.

(j) Assuming L begins with a vowel, say A, show that L has a sublist consisting of five or more
consecutive consonants.



(@)  The five letters partition L into n = 6 sublists (pigeonholes) of consecutive consonants. Here k + 1 =4 and so
k= 3.Hencenk+ 1 = 6(3) + 1 = 19 < 21. Hence some sublist has at least four consecutive consonants.

(b)  Since L begins with a vowel, the remainder of the vowels partition L into n = 5 sublists. Here k + 1 = 5and so
k = 4.Hence kn + 1 = 21. Thus some sublist has at least five consecutive consonants.

13.There are 22 female students and 18 male students in a classroom. Find the total number t of students.
The sets of male and female students are disjoint; hence t = 22 + 18 = 40.

14.Suppose among 32 people who save paper or bottles (or both) for recycling, there are 30 who save paper
and 14 who save bottles. Find the number m of people who:

(k) save both; (b) save only paper; (c) save only bottles.

Let P and B denote the sets of people saving paper and bottles, respectively. Then:
(a)m=n(PN B)=n(P)+ nB)—n(PUB)=30+ 14 — 32 = 12
(b)m=n(P\B)=n(P) —n(PN B)=30— 12 =18

(c)m=n(B\P)=n(B) —n(PNB)=14—12=2

RECURRENCE RELATIONS

Consider the following sequence which begins with the number 3 and for which each of the following terms is
found by multiplying the previous term by 2:

3, 6 12, 24, 48,
It can be defined recursively by:
ao=3, ar=201fork=1 or a9g=3 01 =20 fork=0

The second definition may be obtained from the first by settingk _ k 1. Clearly, theformulaa, _ 3(2") gives
us the nth term of the sequence without calculating any previous term. -

(1) The equation ax=2ay i or, equivalently, ay 1-2ay, where one term of the sequence is defined in
terms of previousterms-of the sequence, is called® recurrence relation.
(2) The equation ag = 3, which gives a specific value to one of the terms, is called an initial condition.

(3) The function a, = 3(2"), which gives a formula for a, as a function of n, not of previous terms, is called
a solution of the recurrence relation.

(4) There may be many sequences which satisfy a given recurrence relation. For example, each of the
following is a solution of the recurrence relation a, = 2a,_;.

1,2,4816,... and 7,14,28,56,112,...

All such solutions form the so-called general solution of the recurrence relation.

(5) Onthe other hand, there may be only a unique solution to a recurrence relation which also satisfies given
initial conditions. For example, the initial condition ag = 3 uniquely yields the solution 3, 6, 12, 24,...
of the recurrence relation a, = 2ay_1.



EXAMPLE

(@) Arithmetic Progression
An arithmetic progression is a sequence of the form

a,a+d a+ 2d, a+ 3d,...

That is, the sequence begins with the number a and each successive term is obtained from the previous
term by adding d (the common difference between any two terms). For example:

(la=54d=3:58,9 11,...
(i) a=2,d=5 2,7,12,17,...
@) a=1d=0 1,1,1,1,1,...

We note that the general arithmetic progression may be defined recursively by:

ag=a and a1 =a+d fork=>
1where the solution isa, = a + (h — 1)d.

(b) Geometric Progression
A geometric progression is a sequence of the form

a, ar, ar?, ard,...

That is, the sequence begins with the number a and each successive term is obtained from the previous
term by multiplying by r (the common ratio between any two terms) for example:
Ma=1r=23:1,3,927,81,...
(ia=5r=2:5,10, 20, 40,...
iia=1,r=%1"'37 3
We note that the general geometric progression may be defined recursively by:

a;=a and aq =ra fork >
1where the solution is a, .1 = ar".

LINEAR RECURRENCE RELATIONS WITH CONSTANT COEFFICIENTS

A recurrence relation of order k is a function of the form

an = o(an—1,8n-2,--+, 8n—k, N)
that is, where the nth term a,, of a sequence is a function of the preceding k terms a, 1, @n», ..., an(@nd possibly
n). In particular, a linear kth-order recurrence relation with constant coefficients is a recurrence relation of the
form
a,=Ciay_1+ Coay_o+ -+ + Cran_x + F(n)
where Cq, Cy,..., Cy are constants with Cy / 0,and f(n) isa function of n. The meanings of the names linear
and constant coefficients follow:

Linear: There are no powers or products of the a;’s.
Constant coefficients: The C,C,,... ,Cy are constants (do not depend on n).

If £(n) = 0, then the relation is also said to be homogeneous.

Clearly, we can uniquely solve for a, if we know the values of a, 1, @y 2,..., a,x - Accordingly, by
mathematical induction, there is a unique sequence satisfying the recurrence relation if we are given initial values
for the first k elements of the sequence.



EXAMPLE Consider each of the following recurrence relations.

(@) a, = 5a,_1 — 4a,_p + n2
This is a second-order recurrence relation with constant coefficients. It isnonhomogeneous because of the n2.
Suppose we are given the initial conditions a; 1,.a, 2. Then we can find sequentially the next few elements
of the sequence:

a3 =5(2) — 4(1) + 32 = 15, a, = 5(15) — 4(2) + 42 = 83

(b) an = 2an_1an_2 +n?
The product a, 1a, » means the recurrence relation is not linear. Given initial conditions a; -1, a, 2-we
can still find the next few elements of the sequence:

ag=2(2)(1) +32 =13, a,= 2(13)(2) + 42 =68

(c) apn=napn_1+3a,2
This is a homogeneous linear second-order recurrence relation but it does not have constant coefficients
because the coefficient of a, 1 is n, not a constant. Given initial conditions a; 1, a=-2, the next few elements
of the sequence follow:

a3 =3Q2) +3(1)=9, a, =4(9) + 3(2) =42

(d) a, = 2a,1 + 5a,_» — 6an_3
This is ahomogeneous linear third-order recurrence relation with constant coefficients. Thus we need three,
not two, initial conditions to yield a unique solution of the recurrence relation. Suppose we are given the

initial conditions a; = 1, a, = 2, a3 = 1. Then, the next few elements of the sequence follow:
as=2(1) +52)—-6(1)=6, as=2(2)+ 5(1) — 6(6) =—-37
ag= 2(1) + 5(6) — 6(—37) = 254

This chapter will investigate the solutions of homogeneous linear recurrence relations with constant coeffi-
cients. The theory of nonhomogeneous recurrence relations and recurrence relations without constant coefficients
lies beyond the scope of this text.

For computational convenience, most of our sequences will begin with a rather than a. The theory is not
affected at all.

6.7. Consider the second-order homogeneous recurrence relation a,, = a,_1 + 2a,_» with initial conditions
g = 2, a; = 7,

(@) Find the next three terms of the sequence.
(b) Find the general solution.
(c) Find the unique solution with the given initial conditions.

(a) Each term is the sum of the preceding term plus twice its second preceding term. Thus:
a,=7+2(2) =11, a;=11+2(7)=25 a,= 25+ 2(11) =46
(b) First we find the characteristic polynomial O(t) and its roots:
OX)=x2—x—2=(X—2)(x +1); rootsr;=2r,=-1
Since the roots are distinct, we use Theorem 6.8 to obtain the general solution:
a, =a") + (1)
(c) The unique solution is obtained by finding c; and c, using the initial conditions:

Forn=0,a, =2, we get: ¢;(2° +c(—1)°=2 or ¢, +¢,=2
Forn=1,a,= 7, weget: ¢;(21) + c,(—1)*=7or 2¢c, — c,=7

Solving the two equations for c; and c,yields ¢, = 3 and ¢, = 1. The unique solution follows:

a,= 3(2) ~ (-1



6.8. Consider the third-order homogeneous recurrence relation a, = 6a,_1 — 12a,_, +8a,_3
(a) Find the general solution.

(b) Find the solution with initial conditions ag = 3, a; = 4, a, = 12.
(a) First we find the characteristic polynomial
OX)=x3—6x2+ 12x — 8= (x — 2)°

Then O(x) has only one root ry = 2 which has multiplicity 3. Thus the general solution of the recurrence relation
follows:

8 =0c(2") + on(2") + gn*2") = (cit+ cn + cN?)(2")
(b) We find the values for ¢;, C,, and c; as follows:

Forn=0,a=3 weget: ¢, =3
Forn=1a =4 weget:2c,+ 2¢c, + 2¢c; = 4
Forn = 2, a,= 12 we get: 4c, + 8¢, + 16c; =12

Solving the system of three equations in c,, ¢,, c;Yyields the solution
;=3 C=-2 ¢c=1
Thus the unique solution of the recurrence relation follows:

a,= (3 —2n+ n?(2"

Propositional logic

PROPOSITIONS AND COMPOUND STATEMENTS
A proposition (or statement) is a declarative statement which is true or false, but not both. Consider, for example,
the following six sentences:

(i) Ice floats inwater.  (iii) 2 + 2=4 (v) Where are you going?
(i) Chinaisin Europe. (iv)2 + 2 =5 (vi) Do your homework.

The first four are propositions, the last two are not. Also, (i) and (iii) are true, but (ii) and (iv) are false.

Compound Propositions

Many propositions are composite, that is, composed of subpropositions and various connectives discussed
subsequently. Such composite propositions are called compound propositions. Aproposition is said to be primitive if
it cannot be broken down into simpler propositions, that is, if it is not composite.

For example, the above propositions (i) through (iv) are primitive propositions. On the other hand, the following
two propositions are composite:

“Roses are red and violets are blue.” and “John is smart or he studies every night.”

The fundamental property of a compound proposition is that its truth value is completely determined by the
truth values of its subpropositions together with the way in which they are connected to form the compound
propositions. The next section studies some of these connectives.

BASIC LOGICAL OPERATIONS



This section discusses the three basic logical operations of conjunction, disjunction, and negation which
correspond, respectively, to the English words “and,” “or,” and “not.”

Conjunction,pA q

Any two propositions can be combined by the word “and” to form a compound proposition called the
conjunction of the original propositions. Symbolically,

PAQ

read “p and g,” denotes the conjunction of p and g. Since p g is a proposition it has a truth value, and this truth
value depends only on the truth values of p and g. Specifically:

Definition 4.1: If p and g are true, then p A q is true; otherwise p A q is false.

The truth value of p A g may be defined equivalently by the table in Fig. 4-1(a). Here, the first line is a short way
of saying that if p is true and q is true, then p A q is true. The second line says that if p is true and q is false, then p
A q is false. And so on. Observe that there are four lines corresponding to the four possible combinations of T and
F for the two subpropositions p and g. Note that p A q is true only when both p and q are true.

4 q |pPNhq P q |pVq p »
T| T T T|T T T F
T | F F T | F T F T
F T F F T T
F F F F F F
(a) “pand g~ (hy“porg” (¢) “notp”
Fig. 4-1

EXAMPLE 4.1 Consider the following four statements:

(i) Ice floats in water and 2 + 2 = 4. (iii) Chinaisin Europeand?2 + 2 = 4.

(i) Ice floats in water and 2 + 2 = 5. (iv) Chinaisin Europeand 2 + 2 = 5.

Only the first statement is true. Each of the others is false since at least one of its substatements is false.

Disjunction, pVv q
Anytwo propositions can be combined by the word “or” to form acompound proposition called the disjunction
of the original propositions. Symbolically,
pPVvVAq
read “p or ¢,” denotes the disjunction of p and g. The truth value of p v g depends only on the truth values of p
and q as follows.



Definition 4.2: If p and g are false, then p Vv q is false; otherwise p Vv q is true.

The truth value of p g maybe defined equivalently by the table in Fig. 4-1(b). Observe that p q is falsenly in the
fourth case when both p and q are false.

EXAMPLE 4.2 Consider the following four statements:

(i) Ice floats in water or 2 + 2 = 4. (iii) China is in Europe or 2 4+ 2 =4.
(i) Ice floats in water or 2 + 2 = 5. (iv) China is in Europe or 2 4+ 2 =5.

Only the last statement (iv) is false. Each of the others is true since at least one of its sub-statements is true.

Remark: The English word “or” is commonly used in two distinct ways. Sometimes it is used in the sense of “p
or g or both,” i.e., at least one of the two alternatives occurs, as above, and sometimes it is used in the sense of “p
or g butnot both,” i.e., exactly one of the two alternatives occurs. For example, the sentence “He will go to Harvard
or to Yale” uses “or” in the latter sense, called the exclusive disjunction. Unless otherwise stated, “or” shall be
used in the former sense. This discussion points out the precision we gain from our symbolic language:

p V (is defined by its truth table and always means “p and/or g.”

Negation, -p

Given any proposition p, another proposition, called the negation of p, can be formed by writing “It is not true
that .. .” or “Itis false that .. .”” before p or, if possible, by inserting in p the word “not.” Symbolically, the negation
of p, read “not p,” is denoted by

-p
The truth value of —p depends on the truth value of p as follows:

Definition 4.3: If p is true, then —p is false; and if p is false, then —p is true.

The truth value of —~p may be defined equivalently by the table in Fig. 4-1(c). Thus the truth value of the
negation of p is always the opposite of the truth value of p.

EXAMPLE 4.3 Consider the following six statements;

(a1) Ice floats in water. (a2) It is false that ice floatsin water.  (@s) Ice does not float inwater.
(b1)2 +2=5 (b2) Itis falsethat2 +2 = 5. (b3)2 +2 /=5

Then (a;) and (as) are each the negation of (a1); and (b,) and (bs) are each the negation of (b1). Since (a1) is
true, (a2) and (as) are false; and since (by) is false, (b2) and (bs) aretrue.

Remark: The logical notation for the connectives “and,” “or,” and “not” is not completely standardized. For
example, some texts use:
p&aq,p-qorpq for pAq
p+q for pvq
‘p,por ~p for —p

4.2 PROPOSITIONS AND TRUTHTABLES

Let P (p,q,.. .) denote an expression constructed from logical variables p,q,..., which take on the value TRUE
(T) or FALSE (F), and the logical connectives , , and (gnd\pthers-discussed subsequently). Such an expression P
(p,q,-..) will be called a proposition.



The main property of a proposition P (p,q,.. .) is that its truth value depends exclusively upon the truth values of
its variables, that is, the truth value of a proposition is known once the truth value of each of its variables is known.
A simple concise way to show this relationship is through a truth table. We describe a way to obtain such a truth
table below.

Consider, for example, the proposition (p — q)a Eigure 4-2(a) indicates how the truth table of (B AQ IS
constructed. Observe that the first columns of the table are for the variables p,q, ... and that there are enough rows
in the table, to allow for all possible combinations of T and F for these variables. (For 2 variables, as above, 4 rows
are necessary; for 3 variables, 8 rows are necessary; and, in general, for n variables, 2" rows are required.) There is
then a column for each “elementary” stage of the construction of the proposition, the truth value at each step being
determined from the previous stages by the definitions of the connectives , , . Finallywg ebtain the truth value
of the proposition, which appears in the last column.

The actual truth table of the proposition (p q) issshown in Fig. 4-2(b). It consists precisely of the columns in Fig.
4-2(a) which appear under the variables and under the proposition; the other columns were merely used in the
construction of the truth table.

plal-alpr-a|-(pr-g plal-twr-9
T|{T|F| F T T|T T
T{F|T| T F T|F F
F|T|F| F T F|T T
FlF|[T| F T F|F T
() ()
Fig. 4-2

Remark: In order to avoid an excessive number of parentheses, we sometimes adopt an order of precedence for
the logical connectives. Specifically,

— has precedence over A which has precedence over Vv
For example, —=p A g means (—p) A gandnot —=(p A Q).

Alternate Method for Constructing a Truth Table

Another way to construct the truth table for —(p A —q) follows:

(@) First we construct the truth table shown in Fig. 4-3. That is, first we list all the variables and the com-
binations of their truth values. Also there is a final row labeled “step.” Next the proposition is written
on the top row to the right of its variables with sufficient space so there is a column under each variable
and under each logical operation in the proposition. Lastly (Step 1), the truth values of the variables are
entered in the table under the variables in the proposition.

(b) Now additional truth values are entered into the truth table column by column under each logical operation
as shown in Fig. 4-4. We also indicate the step in which each column of truth values is entered in the table.

The truth table of the proposition then consists of the original columns under the variables and the last step, that
is, the last column is entered into the table.

polg I p N =g
T [T T T

T F T F

F T F T

F F F F
Step

Fig. 4-3



bl - A ) p | g [ A ) p | g [ Ao

T [ T F T T|T T | F F|T T|T|T|T F|F [T

T F r r F T F T T T F F T F T T T F

F r F F T F T F F F T F F T F F F T

F F F r F F|F F F|T]|F F|F |T]|F F|T|F
Step Il P 1 Step 1 3 2 1 Step 4 1 312 1
(a) (h) (c)

Fig. 4-4

4.3 TAUTOLOGIES AND CONTRADICTIONS

Some propositions P (p,q,.. .) contain only T in the last column of their truth tables or, in other words, they aretrue
for any truth values of their variables. Such propositions are called tautologies. Analogously, a proposition P (p,q,..
.) is called a contradiction if it contains only F in the last column of its truth table or, in other words, if it is false
for any truth values of its variables. For example, the proposition “p or not p,” that is, p p, is a tautology,-and the
proposition “p and not p,” that is, p p, is a contradiction.-This is verified by looking at their truth tables in Fig. 4-
5. (The truth tables have only two rows since each proposition has only the one variable p.)

p|-p|pv-p p|-p|pr-p
T|F| T T|F| F
FlT| T FlT| F
(@pV-p b)pA-p
Fig. 4-5

Note that the negation of a tautology is a contradiction since it is always false, and the negation of a contradiction
is a tautology since it is always true.

Now let P (p,q,.. .) be atautology, and let P1(p,q,.. .), P2(p,q,.. .),... be any propositions. Since P(p.q,..
.) does not depend upon the particular truth values of its variables p,q, ..., we can substitute P; for p, P, for q,...
in the tautology P (p,q,.. .) and still have a tautology. In other words:

Theorem 4.1 (Principle of Substitution): If P(p,q,...) is a tautology, then P (P, P2,...) is a tautology for
any propositions P1, P2, .. ..

4.4 LOGICAL EQUIVALENCE

Two propositions P (p,q,.. Jand Q(p,d,............ ) are said to be logically equivalent, or simply equivalent or
equal, denoted by

P{a.)=Q/da...)
if they have identical truth tables. Consider, for example, the truth tables of —(p Q) and p. ¢ appearing in Fig.

4-6. Observe that both truth tables are the same, that is, both propositions are false in the first case and true in the
other three cases. Accordingly, we can write

—“(pAQ)=-—pV—q
In other words, the propositions are logically equivalent.
Remark: Let p be “Roses are red” and ¢ be “Violets are blue.” Let S be the statement:
“It is not true that roses are red and violets are blue.”

Then S can be written in the form —(p A q). However, as noted above, —(p A Q) = —pv — . Accordingly, S
has the same meaning as the statement:

“Roses are not red, or violets are not blue.”



p|t1|p/\q|ﬁ(p/\q) p|q|ﬁp|ﬁq|ﬂpvﬁq
T T T F T|T| F | F F
T F F T T|F|F | T T
F T F T F|T | T/|F T
F F F T F|I|F|T|T T
@ ~(pNg) by ~pV—gq

Fig. 4-6

4.5 ALGEBRA OF PROPOSITIONS

Propositions satisfy various laws which are listed in Table 4-1. (In this table, T and F are restricted to the truth
values “True” and “False,” respectively.) We state this result formally.

Theorem 4.2: Propositions satisfy the laws of Table 4-1.
(Observe the similarity between this Table 4-1 and Table 1-1 on sets.)

Table 4-1 Laws of the algebra of propositions

Idempotent laws: (laypvp=p (Ib)pAp=p
Associative laws: Ray(pvagVvr=pv(@vVvr) 2)(pAQAT=pA(QAT)
Commutative laws: (3a)pVv g=qVvp (Bb)p A g=qgAp
Distributive laws: 4da)pv@AnN=pEvaoAPVvr d)pAr@vn=pPAqgVpPAr)
Identity laws: (58)p v F=p (Sb)pA T=p
(6a)pv T =T (6b)p A F =F
Involution law: (7) ——p=p
Complement laws: (Ba)pv —p=T (BD)pA —p=T
(9a) T=F (9b) -F =T
DeMorgan’s laws:  |(10a) —=(p V ) = —p A —q (10b) ~(p A @) = —p V —q

46 CONDITIONAL AND BICONDITIONAL STATEMENTS

Many statements, particularly in mathematics, are of the form “If p then g.” Such statements are called
conditional statements and are denoted by

p—q
The conditional p . q is frequently read “p implies g” or “p only if g.”
Another common statement is of the form “p if and only if g.” Such statements are called biconditional
statements and are denoted by

p—4q
The truth values of p — g and p — q are defined by the tables in Fig. 4-7(a) and (b). Observe that:

(@) Theconditional p — q is false only when the first part p is true and the second part q is false. Accordingly,
when p is false, the conditional p — q is true regardless of the truth value of g.

(b) The biconditional p — q is true whenever p and g have the same truth values and false otherwise.

The truth table of —p A g appears in Fig. 4-7(c). Note that the truth table of —=p v g and p — q are identical, that
is, they are both false only in the second case. Accordingly, p — q is logically equivalent to —p V q; that is,

P—0q=—"pVvq



In other words, the conditional statement “If p then g™ is logically equivalent to the statement “Not p or g” which
only involves the connectives and and thus was already a part of our language. We may regard p q as an
abbreviation for an oft-recurring statement.

p|q|p%c/ IJ|CI|I)<—>CI p|c1|ﬁp|ﬁpvq
T T T T T T T T F T
T F F T F F T F F F
F T T F T F F T T T
F F T F F T F F T T
(a) p—>gq (h peogq (¢) " pVyqg
Fig. 4-7

47 ARGUMENTS
An argument is an assertion that a given set of propositions P1, Pa,..., Py, called premises, yields (has a
consequence) another proposition Q, called the conclusion. Such an argument is denoted by
Py, P2, ..., Ph€ Q
The notion of a “logical argument” or “valid argument” is formalized as follows:

Definition 4.4: An argument Py, Po, ..., Pn € Q is said to be valid if Q is true whenever all the premises
P1, P2,..., Pnaretrue.

An argument which is not valid is called fallacy.

EXAMPLE 4.4

(@) The following argument is valid:

p,p— g €qg (Law of Detachment)

The proof of this rule follows from the truth table in Fig. 4-7(a). Specifically, p and p — (Qaretrue
simultaneously only in Case (row) 1, and in this case q istrue.

(b) The following argument is a fallacy:
p—agq€p
For p — gand g are both true in Case (row) 3 in the truth table in Fig. 4-7(a), but in this case p is false.

Now the propositions P1, P»,..., P, are true simultaneously if and only if the proposition P1 A P2 A ... Py is true.
Thus the argument Py, P»,..., Py € Qs valid if and only if Q is true whenever P1 A P> A ... A Pyistrue or,
equivalently, if the proposition (P1 A P2 A ... A Py) — Qs atautology. We state this result formally.

Theorem 4.3: The argument Py, P,..., Pn € Qisvalidifandonlyifthe proposition (PiA P2... APn) — Q
is a tautology.

We apply this theorem in the next example.

EXAMPLE 4.5 A fundamental principle of logical reasoning states:

“If p implies g and q implies r, then p implies r”



plag|r|le - & A (@ = 70 = @® -
T T T T T T T T T T T T T T
T T F T T T F T F F T T F F
T F T T F F F F T T T T T T
T F F T F F F F T F T T F F
F T T F T T T T i i T T F T T
F T F F T T F T F F T F T F
F F T F T F T F T T T F T T
F F F F T F T F T F T F T F
Step 1 2 1 3 1 2 1 4 1 2 1
Fig. 4-8
That is, the following argument is valid:
p—dq—r€p—r (Law of Syllogism)

This fact is verified by the truth table in Fig. 4-8 which shows that the following proposition is a tautology:

[(p—=aA@—=nNl—(P—r

Equivalently, the argument is valid since the premises p — g and g — r are true simultaneously only in Cases
(rows) 1, 5, 7, and 8, and in these cases the conclusion p — r is also true. (Observe that the truth table required 23
= 8 lines since there are three variables p, g, and r.)

We now apply the above theory to arguments involving specific statements. We emphasize that the validity of an
argument does not depend upon the truth values nor the content of the statements appearing in the argument, but
upon the particular form of the argument. This is illustrated in the following example.

EXAMPLE 4.6 Consider the following argument:

S; : If aman is a bachelor, he is unhappy. S, : If a man is unhappy, he dies
young.

S : Bachelors die young

Here the statement S below the line denotes the conclusion of the argument, and the statements S; and S, above

the line denote the premises. We claim that the argument S, S, € S is valid. For the argument is of the form
pP—qq—-r€p—r

where p is “He is a bachelor,” g is “He is unhappy” and r is “He dies young;” and by Example 4.5 this argument
(Law of Syllogism) is valid.

48 PROPOSITIONAL FUNCTIONS, QUANTIFIERS
Let A be a given set. A propositional function (or an open sentence or condition) defined on A isan expression
p(x)

which has the property that p(a) is true or false for each a A. Ehat is, p(x) becomes a statement (with a truth value)
whenever any element a A is substituted for the variable x. The set A is called the domain of p(x), and the set T,
of all elements of A for which p(a) is true is called the truth set of p(x). In other words,

Tp=1{x|xe€ A p(x)istrue} or T,={x]|px)}



Frequently, when A is some set of numbers, the condition p(x) has the form of an equation or inequality involving
the variable x.

EXAMPLE 4.7 Find the truth set for each propositional function p(x) defined on the set N of positive integers.

(@) Letp(x)be“x + 2> 7. ltstruth setis {6, 7,8,.. .} consisting of all integers greater than 5.
(b) Let p(x) be “x + 5 < 3.” Its truth set is the empty set @. That is, p(x) is not true for any integer in N.
(c) Letp(x) be “x + 5> 1.” Its truth set is N. That is, p(x) is true for every element in N.

Remark: The above example shows that if p(x) is a propositional function defined on a set A then p(x) could be
true for all x A, for some x A, ot for no x  A. The next two subsections discuss quantifiers related to such
propositional functions.

Universal Quantifier

Let p(x) be a propositional function defined on a set A. Consider the expression

(Vx €Apx) or VX p(x) 4.1)

which reads “For every X in A, p(x) is a true statement” or, simply, “For all x, p(x).” The symbol

v

which reads “for all” or “for every” is called the universal quantifier. The statement (4.1) is equivalent to the
statement

To=1{x|x€ A pX)}=A (4.2)
that is, that the truth set of p(x) is the entire set A.
The expression p(x) by itself is an open sentence or condition and therefore has no truth value. However, x p(x),

that is p(x) preceded by the quantifier , does havew truth value which follows from the equivalence of (4.1) and
(4.2). Specifically:

Q:: If{x| x € A, p(x)}= A then VY xp(x) is true; otherwise, Vx p(x) is false.

EXAMPLE 4.8

(@) The proposition (Vn& N)(n + 4 > 3)istruesince{n|n+4>3}=1{1,2,3,...}=N.

(b) The proposition (Vne N)(n + 2 > 8) is false since{n|n+2>8}={7,8,...} /=N.

(c) Thesymbol V can be used to define the intersection of an indexed collection {Ai| i € 1} of sets A; as follows:
NAiliel)={x|VielLxeA}

Existential Quantifier

Let p(x) be a propositional function defined on a set A. Consider the expression

(Ix € A)p(x) or 3ax, p(x) (4.3)



which reads “There exists an x in A such that p(x) is a true statement” or, simply, “For some X, p(x).” The symbol

3

which reads “there exists” or “for some” or “for at least one” is called the existential quantifier. Statement (4.3) is
equivalent to the statement

To=1{xIxe€Apx)}/=9 (4.4)

i.e., that the truth set of p(x) is not empty. Accordingly, x B(x), that is, p(X) preceded by the quantifier , dogs have
a truth value. Specifically:

Q.. If{x | p(x)} /= @ then Idx p(x) is true; otherwise, Ax p(x) is false.

EXAMPLE 4.9

(@) The proposition (In € N)(n + 4 < 7)istruesince{n|n+4<7}={1, 2} /= @.
(b) The proposition (3n € N)(n + 6 < 4) isfalse since{n|n + 6 <4}= @.
(c) The symbol 3 can be used to define the union of an indexed collection {A; | i € 1} of sets A; as follows:

UAlieD)={|Tiel x|eA}

49 NEGATION OF QUANTIFIED STATEMENTS

Consider the statement: “All math majors are male.” Its negation reads:

“It is not the case that all math majors are male” or, equivalently, “There exists at least one math
major who is a female (not male)”

Symbolically, using M to denote the set of math majors, the above can be written as

=(Vx € M)(x is male) = (3 x € M) (x is not male) or, when p(x) denotes “X is

male,”

=(Vx e M)p(x) = (IxeM)-p(x) or —Vxpix)= Ix—p(x)
The above is true for any proposition p(x). That is:

Theorem 4.4 (DeMorgan): —=(Vx € A)p(x) = (I x € A)—p(X).
In other words, the following two statements are equivalent:
(1) Itis not true that, for all a € A, p(a) is true. (2) There exists an a € A such that p(a) is false.

There is an analogous theorem for the negation of a proposition which contains the existential quantifier.
Theorem 4.5 (DeMorgan): =(3x € A)p(x) = (Vx € A)—p(x).

That is, the following two statements are equivalent:
(1) It is not true that for some a € A, p(a) is true. (2) For all a € A, p(a) is false.



EXAMPLE 4.10
(@) The following statements are negatives of each other:

“For all positive integers n we have n 4+ 2 > 8” “There exists a positive integer n
such thatn + 2 /> &

(b) The following statements are also negatives of each other:

“There exists a (living) person who is 150 years old” “Every living person is not 150
years old”

Remark: The expression —p(x) has the obvious meaning:
“The statement —p(a) is true when p(a) is false, and vice versa”

Previously, — was used as an operation on statements; here — is used as an operation on propositional functions.
Similarly, p(x) A q(x), read “p(x) and q(x),”is defined by:

“The statement p(a) A q(a) istrue when p(a) and q(a) are true” Similarly, p(x) Vv q(x),

read “p(x) or q(x),” is defined by:

“The statement p(a) Vv q(a) is true when p(a) or q(a) is true” Thus in terms of truth sets:

(i) —p(x) is the complement of p(x).
(i) p(x) A q(x) isthe intersection of p(x) and q(x).
(iii)y p(x) Vv q(x) is the union of p(x) and q(x).

One can also show that the laws for propositions also hold for propositional functions. For example, we have
DeMorgan’s laws:

~(PC) A q(x)) = —p(x) vV —a(x) and  —(p(x) V q(x)) = ~p(X) A —q(x)

Counterexample

Theorem 4.6 tells us that to show that a statement x, p(x) is false, it is equivalent to show that x p(¥) -is true
or, in other words, that there is an element X, with the property that p(xo) is false. Such an element X, is called a

counterexample to the statement Vx, p(x).

EXAMPLE 4.11

(@) Consider the statement wx R, |x | /=0. The statement is false since 0 is a counterexample, thatis, 0] = 0
is not true.

(b) Consider the statement Vx € R, x? > x. The statement is not true since, for example, 4 isa counterexample.
Specifically, (1 )2 >3t is nof true, that is, (1 )2 <3. 3

(c) Consider the statement yx e N,x2 > x. This statement is true where N is the set of positive integers.
In other words, there does not exist a positive integer n for which n? < n.



Propositional Functions with more than One Variable
A propositional function (of n variables) defined over a product set A = A; X -+ X A iSan expression
p(X1, X2,..., Xn)
which has the property that p(ai, az,..., an) is true or false for any n-tuple (a,... an) in A. For example,

X+ 2y+ 32<18

is a propositional function on N® = N % N x N. Such a propositional function has no truth value. However, we
do have the following:

Basic Principle: A propositional function preceded by a quantifier for each variable, for example,

Vx3y,p(x,y) or 3IxVydzp(xy,2)

denotes a statement and has a truth value.

EXAMPLE 4.12 LetB ={1,2,3,..., 9}andletp(x, y) denote “x +y = 10.” Then p(x, y) is a propositional
function on A = B2 = B X B.

(@) The following is a statement since there is a quantifier for each variable:
vx3y, p(x, y), thatis, “For everyX, there existsay such thatx +y = 10”
This statement is true. For example, if x = 1, lety = 9; if x = 2, lety = 8, and so on.

(b) The following is also a statement:
Ay Vx, p(x, y), that is, “There exists a y such that, for every x, we have x + y = 10”
No such y exists; hence this statement is false.

Note that the only difference between (a) and (b) is the order of the quantifiers. Thus a different ordering of the
quantifiers may yield a different statement. We note that, when translating such quantified statements into English,
the expression “such that” frequently follows “there exists.”

Negating Quantified Statements with more than One Variable

Quantified statements with more than one variable may be negated by successively applying Theorems 4.5 and
4.6. Thus each is chagged to and each is changed to as the negation symbol passes through the statement from
left to right. For example,

-[Vx3y3z, p(x,y,z)] = Ix-[Aydz, p(X,y, 2)] = ~3zVy[3z, p(X, Y, 2)
= dxVyVz, —p(x, Y, 2)

Naturally, we do not put in all the steps when negating such quantified statements.

EXAMPLE 4.13

(@) Consider the quantified statement:
“Every student has at least one course where the lecturer is a teaching assistant.” Its negation is the
statement:

“There is a student such that in every course the lecturer is not a teaching assistant.”



(b) The formal definition that L is the limit of a sequence as, a., ... follows:

Ve>0,dneN, Vn>nwehave |a, — L| < €

Thus L is not the limit of the sequence ai, ay,... when:

3€>0VneN,In>ngsuchthat | a, — L| =€

Solved Problems

PROPOSITIONS AND TRUTH TABLES

1.Let p be “It is cold” and let g be “It is raining”. Give a simple verbal sentence which describes each of the
following statements: () —p; (D) p A q; (c)p VvV q; (d)g Vv —p.
In each case, translate , ,and A v ~ toread “and,” “or,” and “It is false that” or “not,” respectively, and then simplify
the English sentence.

(@) Itis not cold. (c) It is cold or it is raining.
(b) It is cold and raining.  (d) It is raining or it is not cold.

2.Find the truth table of —p A q.construct the truth table of —p A g as in Fig. 4-9(a).

p g lgplorpe Rl g |rpalogpopyapra
T|F | F F T | F F T T
F|T|T T F|T F T T
F|F|T F F | F F T T
(a)~pAg (yp Vv (phq)
Fig. 4-9

4.2. Verify that the proposition p vV —(p AQ) is a tautology.

Construct the truth table of p vV —(p A q) as shown in Fig. 4-9(b). Since the truth value of p vV —(p Aq) is T for all values of
p and g, the proposition is a tautology.

4.3. Show that the propositions —(p A q) and —p Vv —q are logically equivalent.
Construct the truth tables for (p q) and p g¢-as iR Fig. 4-10. §inge the truth tables are the same (both propositions are false in
the first case and true in the other three cases), the propositions (p ) and p q are logically equivalent and wecan write

“(PAQG=-pV

p|t1|p/\ci|ﬁ<p/\q) p|q|ﬁp|ﬁq|ﬁpvﬁq

T|T T F T|T| F | F F

T|F F T T|F| F |T T

F|T F T F|T| T]|F T

F|F F T F|F| T|T T
@ ~(pAq) G ~pV—g

Fig. 4-10



4.4. Use the laws in Table 4-1 to show that =(p A Q) V (=p A Q) = —p.

Statement Reason
@ -PVvaVv(=pAaag=(pA—aqV(=pA Qq) DeMorgan’s law
2 =-pA(—qVaQ) Distributive law
(3) = -pAT Complement law
(4) = -p Identity law

CONDITIONAL STATEMENTS

4.5, Rewrite the following statements without using the conditional:

(@) Ifitis cold, he wears a hat.
(b) If productivity increases, then wages rise.

Recall that “If p then g” is equivalent to “Not p or g;” thatis, p — q = —p V . Hence,
(a) Itisnot cold or he wears a hat.
(b) Productivity does not increase or wages rise.

4.6. Consider the conditional proposition p — . The simple propositionsq — p, =p — —gand =q — —p
are called, respectively, the converse, inverse, and contrapositive of the conditional p — g. Which ifany
of these propositions are logically equivalentto p — q?

Construct their truth tables as in Fig. 4-11. Only the contrapositive —q — —p is logically equivalent to the original conditional
proposition p — q.

Conditional Converse Inverse Contrapositive
p|al|r|e pP=>q q=p “p=>q G="p
T T F F T T T T
T F F T F T T F
F T T F T F F T
F F T T T T T T

Fig. 4-11

4.7. Determine the contrapositive of each statement:

(@) If Erik is a poet, then he is poor.
(b) Only if Marc studies will he pass the test.

(@) The contrapositive of p — g is =q — —p. Hence the contrapositive follows:

If Erik is not poor, then he is not a poet.

(b) The statement is equivalent to: “If Marc passes the test, then he studied.” Thus its contrapositive is:

If Marc does not study, then he will not pass the test.
4.8. Write the negation of each statement as simply as possible:

(@) If she works, she will earn money.

(b) He swims if and only if the water is warm.

(c) If it snows, then they do not drive the car.

(@) Notethat =(p — q) = p A —q; hence the negation of the statement is:

She works or she will not earn money.



(b) Notethat =(p — q) = p — —q = —p — q ; hence the negation of the statement is either of the following:

He swims if and only if the water is not warm.
He does not swim if and only if the water is warm.

(c) Notethat —(p — —q) =p A =—g = p A Q. Hence the negation of the statement is:

It snows and they drive the car.

ARGUMENTS

4.9.  Show that the following argument is a fallacy: p — q, = p € —q.

Construct the truth table for [(p — g)A —p]l— —q as in Fig. 4-12. Since the proposition [(p — g)A—p]— —qis not a
tautology, the argument is a fallacy. Equivalently, the argument is a fallacy since in the third line of the truth table p — g and
—p are true but —q is false.

plal|p2a || @20rp |~q|lp>a)rpl=>p
T1T T F F F T
T|F F F F T T
FlT T T T F F
Fl|F T T T T T
Fig. 4-12

4.10. Determine the validity of the following argument: p — g, = p € —p.

Construct the truth table for [(p — g)A—g]— —p as in Fig. 4-13. Since the proposition [(p — q)A—q]— —p
is a tautology, the argument is valid.

pola | - g9 AN - gl = - P
T T T T T F F T T F T
T IF T F F F T F T F T
F T F T T F F T T T [F
F IF F T F T T F T T F
Step I 2 1 3 2 I 4 2 I

Fig. 4-13

4.11. Prove the following argument is valid: p — —q,r — g, r € —p.

Construct the truth table of the premises and conclusions as in Fig. 4-14(a). Now, p — —q, r — ¢, and r are true
simultaneously only in the fifth row of the table, where —p is also true. Hence the argument is valid.

p q rfp=>y r—=>q Y
1 T T T F T F
2 T T F F T F
3 T F T T F F
4| T|F|F T T F plala|lp=al|p
5 F T T T T T T T F F F
6 F T F T T T T F T T F
7 F F T T F T F T F T T
8 F F F T T T F F T T T

(a) (h)y

Fig. 4-14



4.12. Determine the validity of the following argument:
If 7 is less than 4, then 7 is not a prime number. 7 is not less than 4.
7 is a prime number.

First translate the argument into symbolic form. Let p be “7 is less than 4” and  be “7 is a prime number.” Then the argument
is of the form

p— —d —~q€q
Now, we construct a truth table as shown in Fig. 4-14(b). The above argument is shown to be a fallacy since, in the fourth line
of the truth table, the premises p — —q and —p are true, but the conclusion q is false.
Remark: The fact that the conclusion of the argument happens to be a true statement is irrelevant to the fact that the argument
presented is a fallacy.

4.13. Test the validity of the following argument:

If two sides of a triangle are equal, then the opposite angles areequal. Two sides of a
triangle are not equal.

The opposite angles are not equal.
First translate the argument into the symbolic form p — 0, = — q, where p is “Two sides of a triangle are
equal” and q is “The opposite angles are equal.” By Problem 4.10, this argument is afallacy.

Remark: Although the conclusion does follow from the second premise and axioms of Euclidean geometry, the above
argument does not constitute such a proof since the argument is a fallacy.

QUANTIFIERS AND PROPOSITIONAL FUNCTIONS
4.14. Let A = {1, 2, 3, 4, 5}. Determine the truth value of each of the following statements:

@ @3ExeAX+3=10) (c)@xe AKX+ 3<5)
(b) (Vxe A)(x+3<10) (d)(VxeAXx+3<7)

(a) False. For no number in A'is a solution to x + 3 = 10.
(b) True. For every number in A satisfies x + 3 <10.
(c) True. Forifxo= 1,thenxo + 3 <5, i.e, 1isasolution.

(d) False. For if xo = 5, then xo 4 3 is not less than or equal 7. In other words, 5 is not a solution to the given
condition.

4.15. Determine the truth value of each of the following statements where U = {1, 2, 3}is the universal set:
(@) IxVy, X2 <y + 1; (b) Vx3y, x2 + y?2 <12; (c) VxVy, x? +y? <12.

(@) True. Forifx = 1,then1, 2,and 3 are all solutionsto 1 <y + 1.

(b) True. For each xo, lety = 1; then x% + 1< 12is a true statement.

(c) False. For if xo = 2 and yp = 3, then x? + y2 < 12 is not a true statement.
0 "0

4.16. Negate each of the following statements:

(@) Ix vy, p(x,y); (b) Ix Yy, p(x,y);  (c) Ay Ix ¥z, p(x,y,2).
Use =V xp(x) = Ix—p(x)and —=Ixp(x) = Vx—p(x): (a)

—~(3xVy, p(x, y)) = Vx3y—p(x,y)
(b) =(VxVy, p(x,y)) = Ix3y—p(x,y)
(¢) -y Ix ¥z, p(x,y,2)) = Vy ¥x 3z-p(x,v, 2)



4.17. Let p(x) denote the sentence “x4 2 > 5.” State whether or not p(x) is a propositional function on each
of the following sets: (a) N, the set of pogitive-integers; (b) M 1,23,. .
(c) C, the set of complex numbers.
(a) Yes.
(b) Although p(x) is false for every element in M, p(x) is still a propositional function on M.

(c) No. Note that 2i + 2 > 5 does not have any meaning. In other words, inequalities are not defined for complex
numbers.

4.18. Negate each of the following statements: (a) All students live in the dormitories. (b) All mathematics
majors are males. (c) Some students are 25 years old or older.

Use Theorem 4.4 to negate the quantifiers.

(a) At least one student does not live in the dormitories. (Some students do not live in the dormitories.)
(b) At least one mathematics major is female. (Some mathematics majors are female.)
(c) None of the students is 25 years old or older. (All the students are under 25.)









SUBJECT:DISCRETE MATHEMATICS Code:CSE 208-C
B.Tech CSE 4" SEM

UNIT : Algebraic Structure & Morphism

Definition:

1.Algebraic Structure: A system consists of a non empty set and one or more operstion on that set is
called Algebraic system or Algebraic Structure.

2. Binary Operations: A non empty set A such that f: AXA—>A is called a binary operation on A.
If a,b €A & * is a binary operation on A, then it is denoted by a*b .
For Example ®i)The operation of addition on the set of Natural Numbers.

(ii)The operation of substraction on the set of integers is a binary operation but not with the set of
Natural numbers. Because

Table of Operation: Let A ={al,a2,a3.......... an} be a non empty set. “*’ be a binary operation on A
.Then

* di; az an

dai ar*a; ar*an

az ar*ax

an an*ay an*an
Example:

Consider A={1,2,3} and a binary operation * on A is defined as a*b= 2a + 2b . Represents its table

* 1 2 3
1 4 6 8
2 6 8 10
3 8 10 12

Viz: 1¥1=2.1+2.1=4; 1*2=2.1+2.2=6; etc...
Properties of Binary Operations
Let A be a non empty set with a binary operation * . Then

(1) Closure property: If a,b €A, then a*beA
Viz:The operation of addition on the set of integers is a closed operation.

(2) Associative Property: If for every a,b,ceA , WE HAVE



(a*b)*c=a*(b*c)
Example: Let * be a binary operation on set of rational number Q defined as
a*b=a+b-ab
Then * is Associative because
If Va,b,c eQ
(a*b)*c = (a+b-ab)*c = (a+b-ab)+c —(a+b-ab)c =a+b-ab+c-ac-ab+abc=a+b+c-ab-bc-ca+abc
a*(b*c)=a*(b+c-bc)=a+b+c-bc-a(b+c-bc)=a+b+c-ab-bc-ca+abc
Therefore,(a*b)*c=a*(b*c)
(3) Commutative Property: If for all a,beA , a*b=b*a
Example:
* on set Q ,set of Rational numbers defined as a*b=a%? + b? ,Va,b e Q
Is commutative, because
VabeQ,a*b=a’+b?’=b?+a’=b*a
(4) Identity Property : If there exists an element e € A such that
a*e=e*a VaeA
(Right Identity) = (Left Identity)
Theorem : Prove that e;=e; , where el amd e2 are the R.H.l and L.H.l of binary operation *.
Proof: Since el is the right identity
Therefore, el* e2 = el
Again since, e2 is the left identity
Therefore , el=e2, Hence proved.

(5) Inverse Property : The binary operation * has the inverse property if for each a € A
3 anelementbeAsuchthat a*b=b*a=e... e is the identity in *

Then b is said to be invers of a.

(6) Idempotent : The operation * has the Idempotent Type equation here.Property if for every ae A,
we have

a*a=a,VaceA



(7) Distributivity : Let two binaryboperations * and + on A, then * distributes over + ,if for everya, b ,c €
A

We have
a *(b + c¢) = (a *b) +(a *c) [ Left Distribution]

(b+c)*a=(b*c)+(c*a) [Right Distribution]

(8) Cancellation : The operation * has the cancellation Property, if for every a, b, c € A we have
a * b=a* c implies b=c (Left cancellation)
b * a=c* aimplies b=c ( Right cancellation)

(9) Semi group : An Algebraic Structure (A,*) is said to be a semi group if it satisfies the following
properties

(i) The operation * is closed on set A.
(ii) The operation * is an associative operation.

Example: If A={1,3,5,7,9......... } set of all odd positive integers and “*’ is a ordinary
multiplication

Then (A,*) is a semi group.

(10) Monoid : An algebraic structure (A ,0), where ‘0’ is a binary operation on A is said to be Monoid if it
satisfies the following properties

(i) The operation ‘0’ is a closed operation on set A.
(i) The operation ‘0’ is an associative operation.
(iii) There exists an identity element w.r.t the operation ‘0’.

Example: An algebraic structure (N,+) , where N is the set of Natural Numbers with
addition as a binary operation is a Monoid.

(11) Group : An Algebraic Structure (G,*) ,where ‘*’ is a binary operation on G. Then the system (G, *) is said
to be a group if it satisfies the following properties,

(i) The operation ‘*’ is a closed operation.
(ii) the operation ‘*’ is an associative operation.
(iii) There exists an identity element w.r.t the operation ‘*'.

(iv) For every ae G there exits an element a™ € G such that



al*a=a*al=e,eistheidentity elementin G.

Example : The algebraic structure (I,+) is a group ,where | is the set of integers and “+” is the operation
addition. Here 0 is the identity element and for every a € |, -a € | is the inverse .

(12) Sub group: Let (G,*) be a group and let S € G,Then (S,*) is called a subgroup if it satisfies the following
conditions :

(ii) The operation * is an associative operation.
(iii) If e € G, identity elementin G, thene€ S.

(iv) ForeveryaeS,a'eS.

Example : (1,+) is a group ,where | is the set of integers ,the the algebraic structure (H,+) , where H is the

set of even integers is the subgroup of I.
13) Abelian Group : A Group ( G, *) is said to be Abelian Group if

a*b=b*a, VabeG.

xample: Consider an algebraic system (G,*) where G is the set of all non zero real numbers and * is a binary

operation defined by
a*b :% Show that (G,*) is an abelian group.

f: (i) Closure Property : The set G is closed under the operation * ,Since a*b=(ab/4) is a real number ,hence

belongs to G.
(i) Associative Property : Let a,b,c € G then
(a*b)*c (ab/4)*c= (ab)c/16==abc/16
a *(b*c)= a*(bc/4)=a(bc)/16=abc/16
Hence (a*b)*c= a*(b*c)
iii) Identity: let e be a positive real Number then e a=a i.e ea/4=a i.e e=4
arly.a * e=4 l,ae e=4
the identity element in G.

nverse :leta € G ,Ifa'€G,thena*al=4



Hence aal/4=4 oral=16/a

arly,,

al*a=4oral=16/a

, the inverse of the elementain G

/a

he * in G is commutative

> a*b=ab/4=ba/4=b*a

efore, the system (G,*) is an abelian Group.

Hence Proved

Subsemigroups

Let A be a nonempty subset of a semigroup S. Then A is called a subsemigroup of S if A itself is a
semigroup with respect to the operation on S. Since the elements of A are also elements of S, the
Associative Law automatically holds for the elements of A. Therefore, A is a subsemigroup of S if and
only if Ais closed under the operation on S.

EXAMPLE

(a) Let A and B denote, respectively, the set of even and odd positive integers. Then (4, kand

(B, X ) are subsemigroups of (N, +)
since A and B are closed under multiplication. On the other hand, (A, T)is a
subsemigroup of (N, ) since A is closed under addition, but (B, )isnota

subsemigroup of (N, ) since B is not closed under addition.

(b) Let F be the free semigroup onthesetA §, b.Let H consist of all even words, that is, words
with even length. The concatenation of two such words is also even. Thus H is a subsemigroup
of F.

Congruence Relations and Quotient Structures

Let S be asemigroup and let ~ be an equivalence relation on S. Recall that the equivalence relation
~ induces a partition of S into equivalence classes. Also, [a] denotes the equivalence class containing
the element a € S, and that the collection of equivalence classes is denoted by S/~.

Suppose that the equivalence relation ~ on S has the following property:

Ifa ~a andb ~ b, thenab ~ d’'b.

Then~ is called a congruence relation on S. Furthermore, we can now define an operation on the
equivalence classes by

[a] * [b] = [a * b] or, simply, [a] [b] = [ab]



Furthermore, this operation on S/~ is associative; hence S/~ is a semigroup. We state this result
formally.

Theorem : Let ~ be a congruence relation on a semigroup S. Then S/~, the equivalence classes
under ~, form a semigroup under the operation [a] [b] = [ab].

This semigroup S/~ is called the quotient of S by ~.
Homomaorphism of Semigroups

Consider two semigroups (& ) and (83, J). Afunction £+S S is called a semigroup
homomorphism

or, simply, a homomorphism if

Slaxb)=f(a)¥ F(b) or, simply F(ab) = f(a)f(b)

Suppose f is also one-to-one and onto. Then f is called an isomorphism between S and SJ, and S and
S) are said to be isomorphic semigroups, written S = S.

EXAMPLE
(@) Let M be the set of all 2 X 2 matrices with integer entries. The determinant of any matrix A =
3 ¢ dy
a b

is denoted and defined by det(A) |JA| = ad — bc. One proves in Linear Algebra that the determinant
isa
multiplicative function, that is, for any matrices A and B,

det(AB) = det(A) - det(B)

Thus the determinant function is a semigroup homomorphism on (M, ), the matrices under
matrix multi- plication. On the other hand, the determinant function is not additive, that is, for
some matrices,

det(A + B) /= det(A) + det(B)

Thus the determinant function is not a semigroup homomorphism on (M,
+).

(b) Figure B-2(a) gives the addition table for Z4, the integers modulo 4 under addition; and Fig. B-
2(b) gives the multiplication table for S = {1, 3, 7, 9} in Z10. (We note that S is a reduced
residue system for the integers Z modulo 10.) Let f : Zg — S be defined by

f(0)=1, f(1)=3, f(2)=9, f(3)=7



2 2 (3 0 1 7 7 by 9 3
33 0 1 2 9 9 7 3 1

Fig. B-2

Onecanshowthat fisahomomorphism. Since f isalso one-to-oneand onto, fisan
isomorphism. Thus
Z4 and S are isomorphic semigroups.

(c) Let ~ be a congruence relation on a semigroup S. Let ¢: S — S/ ~ be the natural mapping
from S into the factor semigroup S/~ defined by

@(a) = [d]

That is, each element a in S is assigned its equivalence class [a]. Then ¢ is a homomorphism since

@(ab) = [ab] = [a] [b] = @(a)p(b)
Fundamental Theorem of Semigroup Homomorphisms

Recall that the image of a function ¥:-S SJ, written £ (S) of Im F, consists of the images of the
elements of S under £. Namely:

Im F = {b € S| there exists a € S for which f(a) = b}

The following theorem (proved in Problem B.5) is fundamental to semigroup theory.

Theorem : Let £: S — S} be a semigroup homomorphism. Let a ~ b if £(a) = f(b).
Then:

(i) ~ is a congruence relation on S. (ii) S/~ is isomorphic to f(S).
EXAMPLE
(@) Let F be the free semigroup on A = {a, b}. The function f: F — Z defined by
flu) = I(u)

is a homomorphism. Note f(F) = N. Thus F /~ is isomorphic to N.

(b) Let M be the set of 2 X 2 matrices with integer entries. Consider the determinant function det:
M — Z.We note that the image of det is Z. By Theorem B.4, M/~ is isomorphic toZ.

Semigroup Products

Let (S1, *1) and (S2, *2) be semigroups. We form a new semigroup S = S1 ® S, called the
direct product of S1 and Sp, as follows.



55 1 11 7
7 7 11 1 5
(1) The elementsliof Sicomesfrom S1 X Sy, that is, are ordered pairs (a, b) where a € S1 and b €5

(2) The operation * in S is defined componentwise, thatis,

(a,b)x (a, b)) = (a x10, b*x,b) orsimply (a,b)(a,b) = (aa, bb’')
One can easily show (Problem B.3) that the above operation is associative. Symmetric Group Sp

A one-to-one mapping o of the set{1, 2, ..., n} ontoitself is called a permutation. Such a
permutation may be denoted as follows where jj = o(i):

o AR T
1 2 3 """ n
The set of all such permutations is denoted by Sp, and therearen! = n(n — 1) - ... - 2 - 1 of

them. The composition and inverses of permutations in Sp belong to Sp, and the identity function ¢
belongs to Sp. Thus Sp forms a group under composition of functions called the symmetric group of
degree n.

The symmetric group S3 has 3!= 6 elements as follows:

. . ) >
o123 7123 T 123
- 123 2927 321 SP1L= 531
3 > . > N >
i 123 oae 23 T 12 3
1= 4132 2937 59413 2 %P273 19
1

The multiplication table of S3 appears in Fig. B-4.



MAP(A), PERM(A), and AUT(A)

Let A be a nonempty set. The collection MAP(A) of all functions (mappings) f A Alis a
semigroup under composition of functions; it is not a group since some functions may have no
inverses. However, the subsemigroup PERM(A) of all one-to-one correspondences of A with itself
(called permutations of A) is a group under composition of functions.

Furthermore, suppose A contains some type of geometric or algebraic structure; for example, A
may be the set of vertices of a graph, or A may be an ordered set or a semigroup. Then the set AUT(A)
of allisomorphisms of A with itself (called automorphisms of A) is also a group under compositions
of functions.

B.1 SUBGROUPS, NORMAL SUBGROUPS, AND HOMOMORPHISMS

Let H be a subset of a group G. Then H is called a subgroup of G if H itself is a group under the
operation of G. Simple criteria to determine subgroups follow.

Proposition B.5: A subset H of a group G is a subgroup of G if:
(i) The identity elemente € H.

(ii) His closed under the operation of G, i.e. ifa, b € H,thenab € H.
(iii) His closed under inverses, that is, if a € H, then aleHn.

Every group G has the subgroups {e} and G itself. Any other subgroup of G is called a nontrivial
subgroup.

Cosets
Suppose H is a subgroup of G and a € G. Then the set
Ha=1{ha| he H}
is called a right coset of H . (Analogously, aH is called a left coset of H .) We have the following
important results (proved in Problems B.13 and B.15).

Theorem B.6: Let H be a subgroup of a group G. Then the right cosets Ha form a partition of G.

Theorem B.7 (Lagrange): Let H be a subgroup of a finite group G. Then the order of H divides the
order of G.

The number of right cosets of H in G, called the index of H in G, is equal to the number of left
cosets of H

in G; and both numbers are equal to |G| divided by |H |.

Normal Subgroups

The following definition applies.

Definition B.2: A subgroup H of G is a normal subgroup if a—1Ha < H, for everya € G, or,
equivalently, if aH = Ha, i.e., if the right and left cosets coincide.

Note that every subgroup of an abelian group is normal.
The importance of normal subgroups comes from the following result (proved in Problem B.17).

Theorem B.8: Let H be a normal subgroup of a group G. Then the cosets of H form a group under
coset multiplication:
(aH)(bH) = abH



This group is called the quotient group and is denoted by G/H.

Suppose the operation in G is addition or, in other words, G is written additively. Then the cosets
of a subgroup H of G are of the+form a H . Moreover, if H is a normal subgroup of G, then the cosets
form a group under coset addition, that is,

(a+ H)+ (b+ H)=(a+b)+ H



EXAMPLE B.11

@)

(b)

Consider the permutation group S3 of degree 3 which is investigated above. The set H = {g, 01}
is a subgroup of S3. Its right and left cosets follow:

Right Cosets Left Cosets

H ={g 01} H={g 01}
He1 ={p1,02} @1H = {1,
03} Hp ={¢2, 03} @2H
= {2, 02}

Observe that the right cosets and the left cosets are distinct; hence H is not a normal subgroup of
S3.

Consider the group G of22 matrices with rational entries and nonzero determinants. (See
Example A.10.) Let H be the subset of G consisting of matrices whose upper-right entry is zero;
that is, matrices of the form

Then H is a subgroup of G since H is closed under multiplication and inversegand | H.
However, H is not a normal subgroup since, for example, the following product does not belong
to H:

21,8122, b3 b3

13 11 13 - —1-4

On the other hand, let K be the subset of G consisting of matrices with determinant 1. One
can show that K is also a subgroup of G. Moreover, for any matrix X in G and any matrix A in K,
we have

det(X-'AX) = 1

Hence X~ 1AX belongs to K, so K is a normal subgroup of G.

Integers Modulo m

Consider the group Z of integers under addition. Let H denote the multiples of 5, that is,

H={.. —10, —5,0, 5, 10,.. .}

Then H is a subgroup (necessarily normal) of Z. The cosets of H in Z appear in Fig. B-5(a). By the

above Theorem B.8, Z/H = {0, 1, 2, 3, 4} is a group under coset addition; its addition table appears in
Fig. B-5(b).

This quotientgroup Z/H isreferred to as the integers modulo 5 and it is frequently denoted by Zs.

Analogously, for any positive integer n, there exists the quotient group Zn called the integers
modulo n.
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Cyclic Subgroups

Let G be any group and let a be any element of G. As usual, we define a0 =eandantl=an.a
Clearly,
aMal = gM+N and (aM)" = aMN, for any integers m and n. Let S denote the set of all the powers
of a; that is

— -3 -2 -1 2 3
S_{"'Ia Ia /a Iel al al al "'}

Then S is a subgroup of G called the cyclic group generated by a. We denote this group by gp(a).

Furthermore, suppose that the powers of a are not distinct, say al = aS with, say, r >s. Thenal =S
= e where r, s > 0. The smallest positive integer m such that aM = e is called the order of a and it
will be denoted by |a|. If |a| = m, then the cyclic subgroup gp(a) has m elements as follows:

gp(a) = {e, a,a* d*..., a"'}
Consider, for example, the element ¢1 in the symmetric group S3 discussed above. Then:
4011 = 401,<P12 = 402,<P13 =@2- @1 =€

Hence p1 = 3and gp(p1) = {e, 91, ¢2}. Observethat ¢1 divides the order of S3. This is true in
general; that is, for any element a in a group G, |a| equals the order of gp(a) and hence |a| divides
|G| by Lagrange’s Theorem B.7. We also remark that a group G is said to be cyclic if it has an element
asuch that G = gp(a).

Generating Sets, Generators

Consider any subset A of a group G. Let gp(A) denote the set of all elements x in G such that x is

equal toa product of elements where each element comes from the set A A—1 (where A—1 denotes the
set of inverses of elements of A). Thatis,

gp(A) = {x € Gx = b1by ... bm Wwhere each bj € AU A-1}

Then gp(A)is a subgroup of G with generating set A. In particular, Ais said to generate the group Gif G
= gp(A), that is, if every g in G is a product of elements from A U A~ 1. We say A is a minimal set of
generators of G if A generates G and if no set with fewer elements than A generates G. For example,
the permutations a = 01 and b = @1 form a minimal set of generators of the symmetric group S3
(Fig. B-4). Specifically,

e=a%*01=a,0)=ab, 03 =ab: p1=>b, py = b?
and S3 is not cyclic so it cannot be generated by one element.

Homomorphisms
A mapping f from a group G into a group GJ is called a homomorphism if, for every a, b € G,
flab) = f(a)f(b)

In addition, if £ is one-to-one and onto, then £ is called an isomorphism; and G and G} are said to be
isomorphic,

written G = G,



Iff: G — G isahomomorphism, then the kernel of f, written Ker T, isthe set of elements
whose image
is the identity element &) of GJ;

that is, Ker f ={a € G| f(a) = &}

Recall that the image of f, written f(G) or Im f, consists of the images of the elements under f;
thatis,

Im £ = {b € G| there exists a € G for which f(a) = b}.

The following theorem (proved in Problem B.19) is fundamental to group theory.



Theorem B.9: Suppose f: G- GJ is a homomorphism with kernel K. Then K is a normal subgroup of

G, and the quotient group G/K is isomorphic to f(G).

EXAMPLE B.12

@)

(b)

B.2

Let G be the group of real numbers under addition, and let G} be the group of positive real

numbers under multiplication. The mapping f: G — GJ defined by f(a) = 29 isa
homomorphism because

fla + b) = 29+P = 292> = f{a)f(b)
In fact, F is also one-to-one and onto; hence G and GJ are isomorphic.

Letabeanyelementinagroup G.Thefunctionf: Z — Gdefinedbyf(n)=a"isa
homomorphismsince

flm +n)=a™"=a"-a" = f(m) - f(n)
The image of T is gp(a), the cyclic subgroup generated by a. By Theorem B.9,
gp(a) = Z/K
where K is the kernel of f. IfK 0, thengp(@ Z. Onthe other hand, if mis the order of

a, then K {multiples of m}, ang dolgp(a) Zm. IrFother words, any cyclic group is isomorphic to
either the integers Z under additiom, or to Zm, the integers under addition modulo m.

RINGS, INTEGRAL DOMAINS, AND FIELDS

Let R be a nonempty set with two binary operations, an operation of addition (deneted by ) and an

operation of multiplication (denoted by juxtaposition). Then R is called a ring if the following
axioms are satisfied:

[R1]

Foranya,b,c € R,wehave(a+b)+c=a+ (b+c).

[R2] There exists an element 0 € R, called the zero element, such that, for every a € R,

[R3]

[R4]

a+0=0+a=a.
For each a € R there exists an element —a € R, called the negative of a, suchthat
a+ (—a)=(—a)+a=0.

Foranya, b€ R,wehavea+ b=0b+

a.[Rg] Foranya, b, c € R, we have (ab)c =

a(bc).



[Re] Foranya,b,c € R, we have: (i) a(b + ¢) = ab + ac, and (ii) (b + c)a = ba + ca.

Observe that the axioms [R1] through [R4] may be summarized by saying that R is an abelian
group under addition.
Subtraction is defined in Rby-ab = a + ().

One can prove (Problem B.21) thata-0 . =0 a cOforeverya R.

A subset S of R is a subring of R if S itself is a ring under the operations in R. We note that Sis a
subring of

Rif:(i))0 € S, and (ii) foranya, b € S, we havea — b€ Sandab € S.



Special Kinds of Rings: Integral Domains and Fields

This subsection defines a number of different kinds of rings, including integral domains and fields.
R is called a commutative ring if ab ba for every a, kER.

R is called a ring with an identity element 1 if the element 1 has the propertythat @1 1 a a for
every eleraent a R. In such a case, an element a R is called a unit if a has a multiplicative inverse,

thatis, an elementa~1linRsuththataa—1a—1q 1.
R is called a ring with zero divisors if there exist nonzero elementsa, b R such that ab 0. In such a

case, a and b are called zero divisors.

Definition B.3: A commutative ring R is an integral domain if R has no zero divisors, thatis, if ab = 0
implies

a=0orb=0.

Definition B.4: A commutative ring R with an identity element 1 (not equal to 0) is a field if every
nonzero

a € Ris a unit, that is, has a multiplicative inverse.

A field is necessarily an integral domain; for if ab = Oand a /= 0, then
b=1-b=aglab=a1-0=0

We remark that a field may also be viewed as a commutative ring in which the nonzero elements form
a group under multiplication.

EXAMPLE B.13

(a) The set Z of integers with the usual operations of addition and multiplication is the classical
example of an integral domain (with an identity element). The unitsin Z are only 1 and 1, that is,
no other element in Z has a multiplicative inverse.

(b) ThesetZm=1{ 0,1,2,...,m } 1 underthe operation of addition and multiplication modulo m
is aring; it is called the ring of integers modulo m. If mis a prime, then Zyy is a field. On the other
hand, if mis not a prime then Zy has zero divisors. For instance, in the ring Zg,

2:-3=0but2 /=0 (mod6)and3 /= 0 (mod 6)

(c) The rational numbers Q and the real numbers R each form a field with respect to the usual
operations of addition and multiplication.

(d) LetM denotethesetof2 2 matrices with integer or real entries. Then M isanoncommutative ring
with zero divisors under the operations of matrix addition and matrix multiplication. M does have
an identity element, the identity matrix.

(e) Let R be any ring. Then the set R x of all polynomials over R is a ring with respect to the usual
operations of addition and multiplication of polynomials. Moreover, if Ris an intdgral domain then
R x is also anintegral domain.



Ideals

A subset J of aring R is called an ideal in R if the following three properties hold:
(i) 0€J.
(ii) Foranya,b € J,wehavea—b c J.
(iii) Foranyr&€ Randa € J,wehavera, ar € J.



Note first that J is a subring of R. Also, J is a subgroup (necessarily normal) of the additive group
of R. Thus we can form the following collection of cosets which form a partition of R:

{a+J| ae R}

The importance of ideals comes from the following theorem which is analogous to Theorem B.7 for
normal subgroups.
Theorem B.10: Let J be an ideal in a ring R. Then the codets a [+ J ca R form a ring under
the coset operations ’

(a+J)+((b+J)=a+b+Jand (a+ J)(b+J)=ab+ ]

This ring is denoted by R/J and is called the quotient ring.
Now let R be a commutative ring with an identity element 1. For any a € R, the following set is
an ideal:
(a) ={ra| re R}=aR
It is called the principal ideal generated by a. If every ideal in R is a principal ideal, then R is called a

principal ideal ring. In particular, if R is also an integral domain, then R is called a principal ideal
domain (PID).

EXAMPLE B.14

(a) Consider the ring Z of integers. Then every ideal J in Z is a principal ideal, that issJ (m¥ mZ, for
some integer m. Thus Z is a principal ideal domain (PID). The quotient £ing Zm Z/(m) is simply

thering of integers modulo m. Although Z is an integral domain (no zero divisors), the quotient
ring Zm may have zero divisors, e.g., 2 and 3 are zero divisors in Zg.

(b) Let R be any ring. Then {0} and R are ideals. In particular, if R is a field, then {0} and R are the only
ideals.

(c) Let K be afield. Then the ring K[x] of polynomials over K is a PID (principal ideal domain). On the
other hand, the ring K[x, y] of polynomials in two variables is not a PID.

Ring Homomorphisms

A mapping f from a ring R into a ring R} is called a ring homomorphism or, simply,
homomorphism if, for every a, b € R,

f(a +b) = f(a) + f(b),f(ab) = f(a)f(b)

In addition, if f is one-to-one and onto, then fis called an isomorphism; and R and RJ are said to be
isomorphic,

written R = R,

SlJJDDOSE SR — isahomomorphism. Then the kernel of f, written Ker f, is the set of
R elements

whose image is the zero element 0 of RJ; that is,

Ker f ={re R | f(r) = 0}



The following theorem (analogous to Theorem B.9 for groups) is fundamental to ring theory.

Theorem B.11: Let £ R— R} be a ring homomorphism with kernel K. Then K is an ideal in R,
and the quotient ring R/K is isomorphic to f(R).

Divisibility in Integral Domains

Now let D be an integral domain. We say that b divides ain Bif a bc for some ¢ D. An element
u Dis called a unit if u divides 1, i.e., if u has a multiplicative inverse. Antelementb D is called an
asSociate 6f a Difb ua foFsome unitu [ Anonunitp D is said to bg irreducible if p  ab
impliesaor bisa unit.

An integral domain D is called a unique factorization domain (UFD), if every nenunit a D can be
written uniquely (up to associates and order) as a product of irreducible elements.



EXAMPLE B.15

(@) TheringZ of integers is the classical example of a unique factorization domain. The units of Zare

1and —1. The only associates of n € Zare n and —n. The irreducible elements of Z are the
prime numbers.

(b) ThesetD ={a + b 13| a,b integers}is an integral domain. The units of D follow:
\/
+1, 18+5 13, —18 + 5\113

The elements 2, 3 — AZ13 and —3 —_\/13 are irreducible in D. Observe that

4=2.2=(3 —J13)(—3 — J13)

Thus D is not a unique factorization domain. (See Problem B.97.)

B.3 POLYNOMIALS OVER AFIELD

This section investigates polynomials whose coefficients come from some integral domain or
field K. In particular, we show that polynomials over a field K have many of the same
properties as the integers.

Basic Definitions

Let K be an integral domain or a field. Formally, a polynomial f over K is an infinite sequence of
elements from K in which all except a finite number of them are 0; that is,

f=1(..,0an,..., a1, ag) or, equivalently, f(t) = apt" + - -+ + a1t + ag

where the symbol t is used as an indeterminate. The entry ak is called the kth coefficient of f. If n is

the largest integer for which a /= 0, then we say that the degree of f is n, written deg(f ) = n. We also
call ap the leading coefficient of f. If an = 1, we call f a monic polynomial. On the other hand, if every

coefficient of f is 0 then f is called the zero polynomial, written ¥ = 0. The degree of the zero
polynomial is not defined.
Let K[t ] be the collection of all polynomials f(t) over K. Consider the polynomials
f(t) =ant" + -+ + a1t + agand g(t) = byt™ + -+ + b1t + b
Then the sum f + g is the polynomial obtained by adding corresponding coefficients; that is, if m < n,
then

flt) +g(t)=ant"+ -+ + (am + bp)t" + -+ + (a1 + b1)t + (ag + bg)
Furthermore, the product of f and g is the polynomial
f(t)g(t) = (apbm)t"™*™ + - - - + (a1bgo + apb1)t + (apbo)

That is,

| ==

f(t)g(t) =cnamt"™"+ -+ +c1t + ¢ where ck = ajbk—j = agbk +
a1bk—1 + -+ +akbo

i=0



The set K of scalars is viewed as a subset of K t . Specifically, we identify the scalar ag K
with the polynomial €

Sf(t)=ag or ag =(--,0,0,a0)

Then the operators of addition and scalar multiplication are preserved by this identification. Thus, the
mapping
Y: K — K[t ] defined by ¢(ag) = ag is an isomorphism which embeds K into K[t ].



Theorem B.12: Let K be an integral domain. TheF]K t under the operations of addition and
multiplication of polynomials is a commutative ring with an identity element 1.

The following simple result has important consequences.

Lemma B.13: Suppose f and g are polynomials over an integral domain K. Then

deg(fg) = deg(f) + deg(g).

The proof follows directly from the definition of the product of polynomials. Namely, suppose

f(t) =anpt"+ -+ +a1t +ap and g(t) = bmt™ + - -+ + b1t + bg
where ap /= 0and by /= 0. Thus deg(f) = n and deg(g) = m. Then

f(t)g(t) = apbmt"+™ + terms of lower

degree Also, since Kis an integral domain with no zero divisors, anbm

/= 0. Thus

deg(fg) = m + n = deg(f) + deg(g)

and the lemma is proved.

The following proposition lists many properties of our polynomials. (Recall that a polynomial g is
said to

divide a polynomial f if there exists a polynomial h such that f(t) = g(t)h(t).)

Proposition B.14: Let K be an integral domain and let f and g be polynomials over K.

(i) K[t]isan integral domain.
(ii) The units of K[t] are the units in K.
(iii) If g divides f, then deg(g) < deg(f)or f = O.
(iv) If gdivides fand fdivides g, then f(t) = kg(t) where k is a unitin K.
(v) Ifdand d) are monic polynomials such that d divides ! and d/ divides d,
thend = d.

Euclidean Algorithm, Roots of Polynomials

This subsection discusses the roots of a polynomial f(t), where we now assume the
coefficients of f(t) come from a field&. Recall that a scalar a K is a root ofa polynomial f(t) if
f(a) 0. First we begin with an important theorem which is very similar to a corresponding theorem
for the integers Z.

Theorem B.15 (Euclidean Division Algorithm): Let f(t) and g(t) be polynomials over a field K with g(t)
0.

Then there exist polynomials q(t) and r(t) such that

f(t) = q(t)g(t) + r(t)



where either r(t) = 0 or deg(r) < deg(g).

The above theorem (proved in Problem B.30) formalizes the process known as “long division.”
The poly- nomial q(t) is called the quotient and the polynomial r(t) is called the remainder when
f(t) isdivided by g(t).

Corollary B.16 (Remainder Theorem): Suppose f(t)isdividedbyg(t) =t — a. Thenf(a)isthe
remainder.

The proof follows from the Euclidean Algorithm. That is, dividing f(t) by t — a we
get

flt) = q(t)(t — a) + r(t)

where deg(r) < deg(t — a) = 1. Hence r(t) = ris a scalar. Substituting t = a in the equation for f{t)
yields

fla) =q(a)(a—a)+r=q(t)-0+r=r

Thus f(a) is the remainder, as claimed.



Corollary B.16 also tells us that f(a) = 0 if and only if the remainder r = r(t) = 0. Accordingly:

Corollary B.17 (Factor Theorem): The scalar a € Kis a root of f(t) if and only if t — a is a factor

of f(t).

The next theorem (proved in Problem B.31) tells us the number of possible roots of a
polynomial.

Theorem B.18: Suppose f(t) is a polynomial over a field K, and deg(f) = n. Then f(t) has at most
nroots.

The following theorem (proved in Problem B.32) is the main tool for finding rational roots of a
polynomial with integer coefficients.

Theorem B.19: Suppose a rational number p/q (reduced to lowest terms) is a root of the
polynomial

ft) =ant"+ -+ + a1t + ag

where all the coefficients ap,..., a1, ag are integers. Then p divides the constant term

ag and g divides the leading coefficient ap. In particular, if ¢ = p/q is an integer, then
c divides the constant term ag.

EXAMPLE B.16

(a) Suppose f(t) = t3 + t2 — 8t + 4. Assuming f(t) has a rational root, find all the roots of f(t).
Since the leading coefficient is 1, the rational roots of f(t) must be integers from among +1,
+2, +4,

Note f(1) /= 0and f(—1) /= 0. By synthetic division, or dividing by t — 2, we get

21 + 1 — 8 + 4
2 + 6 — 4
1 + 3 — 2 4+ 0

Therefore = 2 is a rootand f(tF (t — 2)(t2+3t—2). Using the quadratic formula fort2 —3¢ 2
0, we obtain the following three roots off(t):

t=2 t=(-3+ JT7)/2, t=(—3— \/T7)/2

(b) Suppose h(t) = t4 — 2t3 + 11t — 10. Find all the real roots of h(t) assuming there are two
integer roots.

The integer roots must be among +1, +2, =5, +10. By synthetic division (or dividing by t —
1 and thent + 2) we get
11 -2 4+ 0 + 11- 10
. 1 -1 -1 + 10

-21 -1 -1 + 10 +0
- 2 + 6 — 10
1 - 3 + 5 +0



Thust = landt = —2arerootsand h(t) = (t—1)(t + 2)(t2—3t + 5). The quadratic formula with t

2 _ 3t + 5tells us that there are no other real roots. Thatis, t = 1 and t = —2 are the only real
roots of h(t).

K[t] as a PID and UFD
The following theorems (proved in Problems B.33 and B.34) apply.

Theorem B.20: The ring K]t of polynomials over a field K is a principal ideal domain (PID). That is,
if Jis an ideal in K t, then there exists a unique monic polynomial d which generates
J, that is, every polynomial f in J is a multiple of d.



Theorem B.21: Let f and g be polynomials ir[ ﬁ( t, not both zero. Then there exists a unique monic
polynomial

d such that:

(i) ddivides both fand g. (ii) If & divides fand g, then &/ divides d.

The polynomial d in the above Theorem B.21 is called the greatest common divisor of f and g,
written

d = gcd(f, g). If d = 1, then fand g are said to be relatively prime.

Corollary B.22: Let d be the greatest common divisor of f and g. Then there exist polynomials m and
nsuch that d = mf + ng. In particular, if f and g are relatively prime, then there exist
polynomialsm and n such that mf + ng = 1.

A polynomial pe K 1 issaid to be irreducible if p is not a scalar and4f p  fg impliesforgisa
scalar. In other words, p is irreducible if its only divisors are its associates (scalar multiples). The
following lemma (proved in Problem B.36) applies.

Lemma B.23: Suppose p € K[t] isirreducible. If p divides the product fg of polynomials fand g in K[t
], then p divides £ or p divides g. More generally, if p divides the'product f1f2 fn of
n polynomials, then p divides one of them.

The next theorem (proved in Problem B.37) states that the polynomials over a field form a unique
factorization domain (UFD).

Theorem B.24 (Unique Factorization Theorem): Let f be a nonzero polynomia[l j'n Kt.Then fcan be
written uniquely (except for order) as a product

J = kpip2...pn

where k € K and the p’s are monic irreducible polynomials in K[t ].

Fundamental Theorem of Algebra

The proof of the following theorem lies beyond the scope of this text.

Fundamental Theorem of Algebra: Any nonzero polynomial f(t) over the complex field C has a root
in C.

Thus f(t) can be written uniquely (except for order) as a product

fltt) = k(t — ri)(t —r2) -+ (t — rn)

where k and the rj are complex numbers and deg(f) n.

The above theorem is certainly not true for the real field R. For example, f(t)- t2 lisa
polynomial

over R, but f(t) has no real root.
The following theorem (proved in Problem B.38) does apply.

Theorem B.25: Suppose f(t) is a polynomial over the real field R, and suppose the complex
namber  £@ bi, b 0, is a root of f(t). Then the complex conjugate z a bi is also
a root of f(t). Hence the following is a factor of f(t):



c(t)=(t —z)(t —z)=t*—2at +a’>+ b’

The following theorem follows from Theorem B.25 and the Fundamental Theorem of Algebra.

Theorem B.26: Let f(t) be a nonzero polynomial over the real field R. Then f(t) can be written
uniguely (except for order) as a product

flt) = kpa(t)p2(t) - - - pn(t)

where k € R and the pj (t) are real monic polynomials of degree 1 or 2.



EXAMPLE B.17 Letf(t) = t4 —3t3 + 6t2 + 25t — 39. Find all the roots of f(t) given that t =

root.
24+ 3iisa

Since2 3iisaroot,then23iisarootandc(t) t2 4t 13is afactor of f(t). Dividing f(t) by
— — — +
c(t)

we get
flt) = (t* — 4t + 13)(t> + t — 3)

The quadratic formula with t 24t-3 gives us the other roots of f(t). That is, the four roots of
f(t) are as
follows J J

t=2+4+3i, t=2-3j t=(-1 13)/2, t= (-1 13)/2
n —



Solved Problems

Q1 consider the set Q of rational numbers, and let * be the operation on Q defined by
axb=a+ b—ab
(a) Find: (i) 3 % 4; (ii) 2 * (=5); (iii) 7 * (1/2).

(b) Is (Q, *) a semigroup? Is it commutative?

(c) Find the identity element for *.
(d) Do any of the elements in Q have an inverse? What is it?

(@ ()3%4=3+4—-3(4)=3+4—-12=-5

(i)2 % (-5) =2+ (-=5) + 2(—5) =2 — 5+
10 = 7 (iii) 7 * (1/2) = 7 + (1/2) — 7(1/2) =
4

(b) We have:
(axb)kc=(a+b—ab)*xc=(a+b—ab)+c—(a+b—ab)c

=ag+b—ab+c—ac—bc+abc=a+b+c—ab—
ac—bc+abca*k (bxc)=a*x(b+c—bc)=a+ (b+c— bc)—
a(b + c — bc)

=a+ b+ c— bc— ab— ac + abc

Hence * is associative and (Q, ) is a semigroup. Also
axb=a+b—ab=b+a—-—ba=b*a
Hence (Q, *) is a commutative semigroup.

(c) Anelement e is an identity element if a * e = a for every a € Q. Compute asfollows:

ake=aa0+e—ae=aq, e—ea=0, e1
—a)=0, e = OAccordingly, O is tﬁbe identity element.
(d) In order for a to have an inverse x, we must have a X O since O is the

identity element by Part (c). Compute as follows:

akx=0a+x—ax=0, a=ax—x, a=x(a—1), x=a/f(a —

)

Thusif a /= 1, then a has an inverse and itis a/(a — 1).



Q..Let S be a semigroup with identity e, and let b and b/ be inverses of a. Show that bbJ, that is,
that inverses are unique if they exist.

We have:

bx(axb)=bxe=b and (bxa)xb =exb =b
Since S is associative, (b * a) ¥ b} = bx (a % B)); hence b = .

Q. LetS = N X N. Let * be the operation on S defined by (a, b) * (dJ, b)) = (ad, bb).

(a) Show that * is associative. (Hence S is a semigroup.)

(b) Define f: (S, *x) — (Q, X) by f(a, b) = a/b. Show that fis a homomorphism.

(c) Find the congruence relation ~ in S determined by the homomorphism f, that is,
where x ~ yif
f(x) = fly). (See Theorem B.4.)

(d) DescribeS/~.DoesS/~ haveanidentityelement? Doesithave

inverses? Suppose x = (a,b),y = (¢, d), z = (e, f).

(@) We have

(xy)z = (ac, bd) * (e, f) = [(ac)e, (bd)f]

x(yz) = (a, b) x (ce, df) = [a(ce), b(df)]

Since a, b, ¢, d, e, f, are positive integers, (ac)e = a(ce) and (bd)f = b(df). Thus (xy)z =
x(yz) and hence *

is associative. That is, (S, *) is a semigroup.

(b) fis a homomorphism since

f (x*y) = f(ac, bd) = (ac)/(bd) = (a/b)(c/d) =
I (X)f(y)

(c) Suppose f(x) = f(y). Thena/b = c/d and hence ad= bc. Thus fdeterminesthe
congruence relation ~ on S
defined by (a, b) ~ (c, d) if ad = bc.

(d) The image of fis Q1, the set of positive rational numbers. By Theorem B.3, S/ ~ is
isomorphic to Q1. Thus
S/ ~ does have an identity element, and every element has an inverse.

B.2. Prove Theorem B.1. Suppose isan
associative operation on a s&t S. Then any product a1 *ar* ... *ap
requires no parenthesis, that is, all possible products are equal.

The proof is by induction on n. Since n is associative, the theorem holds for n >1,
2, and 3. Suppose n 4,

We use the notation:



(a1a, - ap) = (- ((a102)a3) -+ )Jan and [a1a2 ‘- ap] = any product

We show [a1a2 - -apl = (a1a2 -+ ap) and so all such products will be equal. Since [a1a) -

an] denotes some product, there exists an r < n such that [a1a2 - ap]

= [a1a2 - arllor+1
-~ apl. Therefore, by induction,

la1a2 - --anl = [a1a02 - arllar+1 -+ apl = la1a2 -+ arl(ar+1 -+ an)

=la1---arl(lar+1--- an—1)an) = (la1 --- ar] (ar—1 - -
an—1))an

= [a1 -~ an—1lan= (a1 - an—1)an = (a1a2 - - an)

Thus the theorem is proved.

B.3. Prove TheoremB.4: Letf: S — SJ) be asemigroup homomorphism. Leta ~ biff(a) = f(b).
Then:

(i) ~ is a congruence relation; (ii) S/ ~ is isomorphic to f(S).

(i) Firstwe show that ~ is an equivalence relation. Since f(a) = f(a), we have a ~ a.

Ifa ~ b, then f(a) = f(b) or f£(b) = f(a);, hence b ~ a. Lastly,ifa ~ band b ~ ¢, then
f(a) = f(b)and f(b) = f(c); hence f(a) = f(c). Thusa ~ c. Thatis, ~ is an equivalence

relation. Suppose now a ~ & and b ~ b). Then F(a) = F(dd) and F(b) = f(b).

Since fis a homomorphism,

Sf(ab) = f(a)f(b) = f(a)f(b)=f(ab)
Therefore ab ~ aJb). That is, ~ is a congruence relation.

(i) Define W:S/~ —f(S) by W([al) = f(a). We need to prove: (1) W is well-defined, that is,
W(lal) € £(S), and if [a]l = [b] then f([al) = F(Ib]). (2) Wisanisomorphism, thatis, W is
ahomomorphism, one-to-one and onto.

(1) Proofthat W is well-defined: We have W([a]) = f(a). Sincea € S, we have f(a) € £(S).

Hence W([al) € f(S), as required. Now suppose [a]= [b]. Then a ~ b and hence f (a) =
f(b). Thus

W(lal) = f (a) = f (b) = W([b])
That is, W is well-defined.
(2) Proofthat W is an isomorphism: Since f is a homomorphism,
W(lallb]) = Wlabl= f (ab) = f (a)f (b) = W([a])W([b])
Hence W is a homomorphism. $ ppose[] W(a) W(b).Then f(a) f (b) pndsoa

b. Thus a b and W is one-to-one. Lastly, let y f @) Then, f !(aLy for_some a S.
Hence W( a) f (a) y. Thus W is onto f(S). Accordingly, W is an isomorphism.



B.4. Consider the group G = {1, 2, 3, 4, 5, 6} under multiplication modulo 7.
(a) Find the multiplication table of G. (b) Find 2-13-1¢61
(c) Find the orders and subgroups generated by 2and 3.  (d) Is G cyclic?

(@) Tofinda * bin G, find the remainder when the product ab is divided by7.
For example; 56 30 which yields a remainder of 2 when divided by #;, hence 56 2 in G. The
multiplication table of G appears in Fig. B-6(a).

(b) Note first that 1 is the identity element of G. Recall that a—1 is that element of G such
thataa—1 =1. Hence 271 = 4, 3-1=5a3nd6—1=6.

(CZ) We hage 21 =2,22=4,but 23 = 1. Hence |2| = 3 and gp(2) = {1, 2, 4}. We have 31 = 3,
34=2,32=06,

34 =14,35=5,36=1.Hence |3| = 6and gp(3) = G.

(d) G is cyclic since G = gp(3).

=1 2 4 5 0 2 4 7 8 11 13 14
rpr 2 3 4 5 06 rrr 2 4 7 8§ 11 13 14
212 4 6 1 5 202 4 R 14 1 7 11 13
303 6 2 5 1 4 414 8 1 13 2 14 7 11
414 1 5 2 6 707 1413 4 112 1 8
505 3 1 6 4 2 818 1 2 11 4 13 14 7
616 5 4 3 2 1 i 7 14 2 13 1 8 4

13013 117 1 14 8 4 2

4714 13 11 8 7 4 2 1

(«) (h)

Fig. B-6

B.5. Let G be a reduced residue system modulo 15, sayy G 1, 2, 4, 7, 8, 11, 13, 14 (the set of
integers between 1 and 15 which are coprime to 15). Then G is a group under multiplication

modulo 15.
(a) Find the multiplication table of G. (b)Find2—1,7-1 11— 1,
(c) Find the orders and subgroups generated by 2, 7,and 11. (d) Is G cyclic?

(@ Tofind &b in G, find the remainder when the product ab is divided by 15. The
multiplication table appears in Fig. B-6(b).

(b) The integers r and s are inverses if r x s = 1. Hence: 27 1= 8, 7-1= 13, 111 =11.



B.6.

(c) We have 22 = 4,23 = 8,24 = 1. Hence |2| = 4 and gp(2) = {1, 2, 4, 8}. Also,

72=4,73=4%7=13,74 =13 % 7=1. Hence | 7| = 4and gp(7) ={1, 4, 7, 13}. Lastly, 112
=1. Hence |11] =2

and gp(11) = {1, 11}.

(d) No, since no element generates G.

Consider the symmetric group 53 whose multiplication table is given in Fig. B-4.

(a) Find the order and the group generated by each element of S3.

(b) Find the number and all subgroups of S3.

(c) LetA = {01, 02} and B = {¢1, ¢2}. Find AB, 03A, and Ao3.

(d) Let H= gp(o1) and K = gp(02). Show that HK is not a subgroup of S3.
(e) Is S3 cyclic?

(@) There are six elements: (1) €, (2) 01, (3) 02, (4) 03, (5) @1, (6) @2. Find the powers of each

element x until X" = €. Then |x| = n, and gp(x) = {¢, x1, x2, ..., x"—1}. Note x1 = x, so we
need only begin withn = 2when x /= &.

(1) el = &; 50 |e| = 1and g(e) = {e}.

) 012 =g hencelr 0-=2 ancli gp(o )1= {0}

(3) 0? =g hence-o-=2andgp(o p=1{g 0}

(4) 0? =g hence-o-=2andgp(o p=1{c 0}

G) @ =0, =0 @ =¢hence-@p-=3andgp(e)=1{c 0,0}

6) ©*» =0, = @ =¢hence-@-=3andgp(p)={¢,0}
(b) Firstofall, H]1 = {€} and H2 = S3 are subgroups of $3. Any other subgroup of $3 must have
order 2 or 3 since its order must divide S3 = 6. Since 2 and 3 are prime numbers, these

subgroups must be cyclic (Problem B.61) and hence must appear in part (a). Thus the other
subgroups of S3 follow:

H3 ={g 01}, Ha ={g 02}, Hs ={g 03}, He = {e @1, p2}
Accordingly, S3 has six subgroups.

() Multiply each element of A by each element of B:

o191 = 02, 0192 = 03, 031 =03, 0202 =01



Hence AB = {01, 02, 03}.

Multiply 03 by each element of A:

0301 = @1, 030 = @2, hence 03A = {1, @2}

Multiply each element of A by 03:

0103 = @2, 0203 = @1, hence Ao3 = {p1, @2}

(d H e, 01}, K e, o2}and then HK e, 01, 02, ¢1, which is not a subgroup of $3 since
HK Tias four elefhénts. =1 }

(e) S3is not cyclic since S3 is not generated by any of itselements.

B.7. Let g and 1 be the following elements of the symmetric group Se:
)2

- - )3
_ 1 2345 6 dr= 123456
0= 315462 and 7531624

Find: to, ot, 0 2, and 0 — 1. (Since o and t are functions, o means apply o and then t.)

Figure B-7 shows the effect on 1, 2, ..., 6 of the composition of the permutations:

(a) oandthent; (b)tandtheno; (c) o and

theno,i.e. o2. Thus:

_ 12 2 -
0= 15 3643 26 5r—065823426

o w
~ B~
N o
= o

53
- 2

1 2
We obtain o —1 by interchanging the top and bottom rows of o and then rearranging:

- 315 2 . 6
o 1= 173 5 2 —,61%32 3452
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B.8. Let Hand K be groups.

(a) Define the direct product G = H X K of Hand K.

(b) What is the identity element and the order of G = H X K?
(c) Describe and find the multiplication table of the group G = Z2 X Z3.

(a) Let G = H X K, the Cartesian product of H and K, with the operation * defined
componentwise by

(h, k)x b, ki = (hh, kki)
Then G is a group (Problem B.68), called the direct product of H and K.

(b) The elemente = (ey, ek) is the identity element of G, and |G| = |H| - |K].
(c) Since Z2 has two elements, G has four elements. Let
e=(0,0),a=(1,0),b=(0,1),c=(1,1)

The multiplication table of G appears in Fig. B-8(a). Note that G is abelian since the table is
symmetric. Also,

a’> = e, b?> = e, ¢* = e. Thus G is not cyclic, and hence G = Z,.

B.9. Let S be the square in the plane R2 pictured in Fig. B-8(b), with its center at the origin 0. Note
that the vertices of S are numbered counterclockwise from 1 to 4.
(a) Define the group G of symmetries of S.
(b) List the elements of G.

(c) Find a minimum set of generators of G.




Fig. B-8

(@) A symmetry o of S is a rigid one-to-one correspondence between S and itself. (Here rigid
means that distances between points do not change.) The group G of symmetries of Sis the
set of all symmetries of S under composition of mappings.

(b) There are eight symmetries as follows. For ¢ 0°,90°, 180°, 270°, let o (a) be the symmetry
obtained by rotating S about its center o degrees, and let T () be the symmetry obtained
by reflecting S about the y-axis and then rotating S about its center a degrees. Note that
any symmetry o of S is completely determined by its effect on the vertices of S and hence
o can be represented as a permutation in S4. Thus:

- > - )3
1 2 3 4 1234
o (0°) = 1234 , 0(90°) 7341 ,
- > - >
1 2 3 4 12 3 4
o (180°) = 3414 , 0(270° h+2 3
- )3 - >
1 2 3 4 123 4
T(0°) = 2143 , 7(90°) 3214 ,
-1 2 3 4Z " 1234
T(180°) = 4321 , 7(270°)1=32

(c) Leta = 0(90°)and b = t(0°). Then a and b form a maximum set of generators of G.

Specifically,
03(0°)= a4, 0(90°) = a, 0(180°) = a2, 0(270°) =
a
r(%°)= b, t©(90°) = ba, 7(180°) = ba?,  1(270°) =
ba

and G is not cyclic so it is not generated by one element. (One can show that the relations
at = e, b2 = e, and

bab = a—1 completely describe G.)

B.10. Let G be a group and let A be a nonempty set.

(a) Define the meaning of the statement “G acts on A.”
(b) Define the stabilizer Hg of an element a € A.

(c) Show that Hq is a subgroup of G.

(@) Let PERM(A) denote the group of all permutations of A. Let ¢ : G — PERM(A) be any
homomorphism. Then
G is said to act on A where each element g in G defines a permutationg : A — A by

g(a) = (Y(g))(a)



B.11.

B.12.

B.13.

B.14.

(Frequently, the permutation g : A — A is given directly and hence the homomorphism is
implicitly defined.)

(b) The stabilizer Hg of a € A consists of all elements of G which “fix a,” thatis,

Ho=1{g € G| g(a) = a}

() Since e(a) = a, we have e € Hg . Suppose g, ¢ € Hg . Then (gd’)(a) = g(d*(a)) = g(a) =
a; hence gg¢) € Hg . Also, g~ 1(a) = asince g(a) = a; henceg—1 € Hg . Thus Hgis a
subgroup of G.

Prove Theorem B.6: Let H be a subgroup of a group G. Then the right cosets Ha form a
partition of G.

Since e € H, we have a = ea € Ha; hence every element belongs to a coset. Now
suppose Ha and Hb are not disjoint. Say ¢ € Ha N Hb. The proof is complete if we show that
Ha = Hb.

Since ¢ belongs to both Ha and Hb, we have c = h1a and ¢ = hb, where h1, hp € H.
Then h1a = hpb,andsoa = hq 1hzb. Letx € Ha. Then

x = h3a = h3h1 Lhyb

where h3 € H. Since H is a subgroup, h3h1 1h2 € H; hence x € Hb. Since x was any
element of Ha, we have

Ha < Hb. Similarly, Hb < Ha. Both inclusions imply Ha = Hb, and the theorem is proved.
Let H be a finite subgroup of G. Show that H and any coset Ha have the same number of

elements.

Let H = {h1, hy,.. ., h }, where H has k elements. Then Ha = {h1a, haa, .. ., hka}.

However, hja = hjaimplies hj = hj; hence the k elements listed in Ha are distinct. Thus H
and Ha have the same number of elements.

Prove Theorem B.7 (Lagrange): Let H be a subgroup of a finite group G. Then the order of H
dividesthe order of G.

Suppose H has r elements and there are s right cosets; say

Haq,Ha),.. .,H as

By Theorem B.6, the cosets partition G and by Problem B.14, each coset has r elements.
Therefore G has rs elements, and so the order of H divides the order of G.

Prove: Every subgroup of a cyclic group G is cyclic.

Since G is cyclic, there is an elementa G suckthat G gp(a). Let H be a subgreuplof G.
If @ e ,then Hgp(e) and H is cyclic. Otherwise, H contains a nonzero power of a. Since H is
a subgroup, it must be closed under inverses and so H contains positive powers of a. Let m be

the smallest positive power of a such that a” belongs to H . We claim that b a™ generates H .



Let x be any other element of H ; since x belongs to G we have x a” for some integer n. Dividing
n by m we get a quotient g and a remainder r, thatis,

n=mq-+r

where0 < r<m.

n_—_ ~mg4r — ~mq ., Af — WG . A r— j}—q AN
Then a"=a"*"=am-a=b7-0ds0ad=b"a



B.15.

B.16.

B.17.

Buta, b € H . Since H is a subgroup, b—9 a"" € H, which means a” € H. However, m is the

smallest positive power of a belonging to H . Therefore, r = 0. Hence x = " = b9 . Thus b
generates H, and H is cyclic.

Prove Theorem B.8: Let H be a normal subgroup of a group G. Then the cosets of Hin G form
a group under coset multiplication defined by (aH) (bH) = abH.
Coset multiplication is well-defined, since

(aH)(bH) = a(Hb)H = a(bH)H = ab(HH) = abH

(Here we have used the fact that H is normal, so Hb _bH, and, from
Problem B.57, that HH  H.) Associativity of coset multiplication follows
from the fact that associativity holds in G. H is the identity element of G/H , since

(aH)H = a(HH) = aH and H (aH) = (Ha)H = (aH)H = aH
Lastly, a—1H s the inverse of aH since

(a—*H)(aH) = a—*aHH = eH = H and (aH)(a—*H) = aa—*HH = eH = H

Thus G/H is a group under coset multiplication.

Suppose F: G — GJ is a group homomorphism. Prove: (a) f(e) = eJ; (b) (fa—6) =
fla)~1.

(a) Since e = ee and fis a homomorphism, we have

f(e) = f (ee) = f (e)f (e)

Multiplying both sides by f (e) 1 gives us our result.

(b) Using part (a) and that aa—1=0"1g = e, wehave

e = f(e)=f(aa') = f(a)f(a-') and e = f(e)=f(a"'a)=f(a")f(a)
Hence f (a—1) is the inverse of £ (a); thatis, f (a—1) = f (a)— 1.

Prove Theorem B.9: Let f G G} be a homomorphism with kernel K. Then K is a normal
subgroup of G, and G/K is isomorphic to the image of f. (Compare with Problem B.5, the
analogous theorem for semigroups.)

Proof that K is normal: By Problem B.18, f(e) = eJ, so e € K. Now suppose a, b € K
and g € G. Then

f(a) =€ and F(b) = &). Hence

S(ab)=f(a)f(b) =
el =e fla71)=F
(a)~1=e"1=0¢



Flaag™2) = f(a)f (a)f (g~ 1) = fla)ef(g)1 = e

Hence ab, a_l, and gag_l belong to K, so K is a normal subgroup.
Proof that G/K = H, where H is the image of f: Let : G/K — H be defined by

¢(Ka) = f (a)

We show that ¢ is well-defined, i.e., if Ka = Kb then ¢(Ka) = ¢(Kb). Suppose Ka = Kb.
Thenab-t € K

(Problem B.57). Then F(ab—1) = eJ, and so
S(a)f (b))~ =f(a)f(b-!) = f(ab~?) = e
Hence f (a) = f (b), and so ¢(Ka) = ¢(Kb). Thus ¢ is well-defined.

We next show that ¢ is a homomorphism:

¢(Kakb) = d(Kab) = f (ab) = f (a)f (b) = ¢(Ka)d(Kb)

Thus ¢ is a homomorphism. We next show that ¢ is one-to-one. Suppose ¢(Ka) =

B.18.

d(Kb). Then
f(a)=f(b) or f(a)f(b)*=e or f(a)f(b-')=e or f(ab?)=e

Thus ab-! € K, and by Problem B.57 we have Ka = Kb. Thus ¢ is one-to-one. We next show
that ¢ isonto. Let h € H. Since H is the image of f, there exists a € G such that f(a) = h.
Thus §(Ka) = f(a) = h, and so ¢ is onto. Consequently G/K = H and the theorem isproved.

Consider the ring Z190 = {0, 1, 2,.. ., 9} of integers modulo 10. (a) Find the units of
210
(b) Find —3, —8, and 3~ 1. (¢) Let f(x) = 2x2 + 4x + 4. Find the roots of f(x) over Z10.

(@) By Problem B.78 those integers relatively prime to the modulus m 10 are the units in Z1(.
Hence the units are 1, 3, 7, and 9. =

(b) Recallthat —ainaringRisthe elementsuchthata+(—a) = (—a)+a = 0. Hence -3 = 7
since3+7 = 7+3 = 0in 210. Similarly —8 = 2. Recall that alina ring R is the element

suchthata - a~1=a"1.a=1. Hence3=1 = 7since3-7=7-3=1inZ10.



(c) Substitute each of the ten elements of Z1g into_f(x) to see which elements yield 0. We
have:

f(0)=4,f(2)=0,f(4) = 2,f(6)=0,f(8)=4
f(1)=0.f(3) =47 (5) =41 (7)=0,f(9)=2

Thus the roots are 1, 2, 6, and 7. (This example shows that a polynomial of degree n can
have more than n roots over an arbitrary ring. This cannot happen if the ring is a field.)

B.19. Prove thatinaringR: ()@ &0 .a =0; (ii) a(—-b) = (—a)b = —ab; (iii) (-1)a = —a (when R
has an identity element 1).

(i) Since 0 = 0 + 0, wehave
a-0=ag(0+0)=a-0+a-0

Adding —(a - 0) to both sides yields 0 = a - 0. Similarly0 - a =
0.

(i) Usingb + (—b) = (—b) + b = 0, we have
ab+a(—b)=a(b+(—b))=a-0=0

a(—b)+ab =a((—b)+b)=a-0=0

Hence a(—b) is the negative of ab; that is, a(—b) = —ab. Similarly, (—a)b = —ab.

(iii) We have
a+(-1)a=1-a+(-1)a=(1+(-1))a=0-a=0
(-l)a+a=(-1)a+1-a=(-1)+1)a=0-a=0
Hence (—1)a is the negative of g; that is, (—1)a = —a.

B.20. Let D be anintegral domain. Show that if ab = ac with a /= 0then
b=c
Since ab = ac, we have

ab—ac=0 andso alb—c)=0

Since a /= 0, we must have b — ¢ = 0, since D has no zero divisors.

Hence b = c.

B.21. Suppose Jand K are ideals in a ring R. Prove that J N Kis an ideal

inR.
Since Jand K are ideals, 0 € Jand 0 € K. Hence0 € J N K. Now leta, b € JN Kand letr
€ R.Then

a,be Janda, b € K. Since J and K are ideals,
a— b, ra,ar €J and a — b, ra, ar € K
Hencea — b, ra, ar € J N K. Therefore J N Kis an ideal.

B.22. Let J be an ideal in a ring R with an identity element 1. Prove: (a) If 1 € Jthen J = R; (b) If any



B.23.

B.24.

unit
u € JthenJ = R.

(a) If1 € Jthenforanyr € Rwehaver - 1 € Rorr € J.HenceJ = R.
(b) Ifu € Jthenu~1 . u € Jorl € J.Hence) = Rby part(a).

Prove: (a) A finite integral domain D is a field. (b) Zp is a field where p is a prime number.
(c) (Fermat) If p is prime, then aP = a (mod p) for any integer a.

(a) Suppose D has n elements, say D = {a1, a2,.. ., an}. Let a be any nonzero element of D.
Consider the n elements

aai, aay,..., an

Since a /= 0, we have aaj = aay implies aj = ak (Problem B.22). Thus the above n elements
are distinct, and sthey must be a rearrangement of the elements of D. One of them, say
aak , must equal the identity element 1 of D; that is, aagx = 1. Thus ak is the inverse of a.
Since a was any nonzero element of D, we have that D is a field.

(b) RecallZp = {0,1,2,...,p — 1}. We show that Zp has no zero divisors. zero divisors. Suppose
a kb = 0in Zp; thatis, 0 (mod p). Then p divides ab. Since p is prime, p divides a orp
divides b. Thusa = 0(mod p) or b = 0 (mod p); thatis,a = 0 or b = 0in Zp. Accordingly,
Zp has no zero divisors and hence Zp is an integral domain. By part (a), Zp is a field.

(c) If p divides a, then g = 0 (mod p) and so aP = a = 0 (mod p). Suppose p does not divide
a, then a may be viewed as a nonzero element of Zpisa field, its nonzero elements form a
group G under multiplication of order p — 1. By Problem B.45, aP—1 = 1in Zp.

In other words, aP—1 = 1 (mod p). Multiplying by a gives aP = a (mod p), and the
theorem is prove

Suppose f(t) = 2t3 — 3t2 — 6t — 2. Find all the roots of f(t) knowing that f(t) has a
rational root.

Therational roots of f(t)mustbeamong +1, =2, +£1/2. Testing each possible root, we
get, by synthetic division

(or dividing by 2t

1), > —3—6-2

—-14+2+4+2
Thereforet = —1/2is a

root and 2-4-4+0



f(t)=(t+ 1/2)(2t> — 4t — 4) = (2t + 1)(t* — 2t — 2)

We can now use the quadratic formula on t 2 — 2t — 2 to obtain the following three
roots of £ (t):

t=—-1/2,t= 1+\Z3,t= 1—¢3

B.25. Let f(t) = t4 — 3t3 + 3t2 + 3t — 20. Find all the roots of f(t) giventhatt = 1 + 2i is a root.

Since 1+ 2jisaroot,then1 — 2jisarootandc(t) = t2 — 2t + 5isafactor of f(t).
Dividing f(t) by c(t) we get

f(t)=(t>?—2t+5)(t>?—t— 4)

The quadratic formula with t 2 — t — 4 gives us the other roots of £ (t ). That is, the four
roots of f (t ) follow:

t=1+2it=1-2it =(1+Jm/z, t=(1—J17)/2

B.26. Let K = Zg. Find all roots of f(t) = t2 + 6t.
Here Zg = {0, 1, 2,.. ., 7}. Substitute each element of Zg into f(t )

to obtain:

f(0)=0,f(2)=0,f(4)=0,f(6)=0

Then f (t ) has four roots, t = 0, 2, 4, 6. (Theorem B.21 does not hold here since K is not a
field.)

B.27. Suppose f(t) is a real polynomial with odd degree n. Show that f(t) has a real root.

The complex (nonreal) roots come in pairs. Since f(t) has an odd number n of roots
(counting multiplicity),

f (t) must have at least one real root.

B.28. Prove Theorem B.15 (Euclidean Division Algorithm): Let f(t) and g(t) be polynomials over a
field K

with g(t) /= 0. Then there exist polynomials g(t) and r(t) such that
ftt) = a(t)g(t) + r(t)
where either r(t) = 0 or deg(r) < deg(g).

If f(t) = Oorifdeg(f) <deg(g), thenwe have therequired representation f(t) =
Og(t) + f(t). Now suppose deg(f) = deg(g), say

f(t)=at"+ - +alt+(§1andg(t)=bt’"+ Tbto+b



where ap, by /= 0and n>m. We form the
polynomial
a
f(t)=F(t)=""t-"g(t) (1)

1 b
m

(This is the first subtraction step in “long division.”) Then deg(f1) < deg(f). By induction,
there exist polynomials=g1(t) and-r(t) such that f1(t:q1(t)g(t) r(t) where either r(t) 0 or
deg(r) < deg(g). Substituting this into (1) agd sol\}fing for f(t), we get

flt)= q(t)+ "t=m g(t)+r(t)

bm
which is the desired representation.

B.29. Prove Theorem B.18: Suppose f(t) is a polynomial over a field K, anddeg(f) n. Then f(t)
has at most n roots.

The proofis by induction on n. If n = 1, then f(t) = at + b and f(t) has the unique root
t = —b/a. Suppose

n>1.If f (t ) has no roots, then the theorem is true. Suppose a € Kis a root of £ (t ). Then

f(t)=(t—a)g(t) (1)
where deg(g) = n — 1. We claim that any other root of f (t ) must also be a root of g(t).
Suppose b /= ais another root of f (t ). Substitutingt = b in (1) yields0 = f (b) = (b —
a)g(b).

Since K has no zero divisors and b — a /= 0, we must have g(b) = 0. By induction, g(t) has at
most n — 1 roots. Thus

f (t) has at most n — 1 roots other than a. Thus f (t ) has at most n roots.

B.30. Prove Theorem B.19: Suppose a rational number p/q (reduced to lowest terms) is a root of the
polynomial

flt) =ant"+ -+ + a1t + ap

where all the coefficients ap,.. ., a1, ag are integers. Then p divides the constant term ag and

q divides the leading coefficients an. In particular, if ¢ = p/q is an integer, then c divides the
constant term ag.

Substitute® p/q into f(F) 0 to obtain an(p/q)™ Ta1(p/q} ap™ 0. Multiply both sides
of the equation by g/ toobtain

anp" + an—1p""'q + an—2p"*q* + - - - +a1pg" +apg" =0 (1)



B.31.

B.32.

B.33.

B.34.

Since p divides all of the first n terms of (1), p must divide the last term apg”. Assuming p and
q are relatively prime, p divides ag. Similarly, g divides the last n terms of (1), hence g divides

the first term app”. Since p and q are relatively prime, g divides ap,.

Prove Theorem B.20: The ring{< t of polynomials over a field K is a principal ideal domain
(PID). IfJisanidealinKt, then]there exists a uniqgue monic polynomial d which generates J
, that is, every polynomial fin J is a multiple ofd.

Let d be a polynomial of lowest degree in J. Since we can multiply d by a nonzero scalar
and still remain in J, we can assume without loss in generality that d is a monic polynomial
(leading coefficient equal 1). Now suppose £ € J. By the division algorithm there exist
polynomials g and r such that £ = gd + r where either r = 0 or deg(r) < deg(d). Now f, d
€ J implies gd € J and hencer = f — qd € J. But d is a polynomial of lowest degree in J.
Accordingly, r = 0 and £ = qd, that is, d divides f. It remains to show that d is unique. If & is
another monic polynomial which generates J, then d divides &) and d) divides d. This implies
that d = dJ, because d and d} are monic. Thus the theorem is proved.

Prove Theorem B.21: Let fand g be polynomialsin K t , notboth the zero polynomial. Thenthere

exists a unique monic polynomial d such that: (i)[gl divides both fand g. (ii) If & divides fand g,
then d dividesd.

Theset I = {mf + ng|m, n € K[t]} is an ideal. Let d be the monic polynomial which
generates /. Note £, g € /; hence d divides fand g. Now suppose d? divides fand g. LetJ be

the ideal generated by dJ. Then f, g € Jand hence I < J. Accordingly, d € J and so d) divides
d as claimed. It remains to show that d is unique. If d1 is another (monic) greatest common
divisor of f and g, then d divides d1 and d1 divides d. This implies that d = d1 because d
and d1 are monic. Thus the theorem is proved.

Prove Corollary B.22: Let d be the greatest common divisor of f and g. Then there exist
polynomials m and n such that d = mf + ng. In particular, if f and g are relatively prime,
then there exist polynomials m and n such that mf + ng = 1.
From the proof of Theorem B.21 in Problem B.34, the greatest common divisor d
generates the ideal

I ={mf+ ng| m, n€ K[t]}.Thus there exist polynomials m and n such that d = mf
+ ng.
Prove Lemma B.23: Suppose p € K[t ] is irreducible. If p divides the product fg of

polygor‘rliilsf, g Kt,then pdivides for p divides g. More generally, if p divides the product
f1f2 fn of n polynomials, then p divides one of them.



Supposepdividesfgbutnotf. Sincepisirreducible, the polynomials fand p mustthen
be relatively prime. Thus there exist polynomials m, n € K[t] such that mf + np = 1.
Multiplying this equation by g, we obtain mfg + npg = g. But p divides fg and so p
divides mfg. Also, p divides npg. Therefore, p divides the sum g = mfg + npg.

Now suppose p divides f1f2 * - - fn. If pdivides f1, then we are through. If not, then
by the above result p dividestheproductf? - - - fn. Byinductiononn, pdividesoneofthe
polynomialsinthe productf? - - - fn. Thusthe lemma is proved.

Boolean Algebra

BASIC DEFINITIONS

Let B be a nonempty set with two binary operations  and " a unary operationJ, and two distinct elements
0 and 1. Then B is called a Boolean algebra if the followiﬁg axioms hold where a, b, c are any elements in B:

[B;y] Commutative laws:
(la) a +b=bt+a (1) axb=b s

[B,] Distributive laws:
(20) a 4+ (b xc) =(a +b) x(a+c) (2b) ax(b4c)=(a xb)+(a xc)

[B3] Identity laws:
(30) a +0=a (3b) axl= a

[B4] Complement laws:
(4a0) a+d =1 (4b) axd =0

We will sometimes designate a Boolean algebra by(J B, 4% .,0, 1, when we want to emphasize its six parts.

We say 0 is the zero element, |, is the unit element, and &) is the complement of a. We will usually drop the symbol

and use juxtaposition instead. Then (2b) is written a(b , c) _ ab+ ac which is the familiar algebraic identity
of rings and fields. However, (2a) becomes a + bc _ GJF b)(aJr c), which is certainly not a usual identity
in algebra.

The operations 4+,%, and J are called sum, product, and complement, respectively. We adopt the usual

convention that, unless we are guided by parentheses, / has precedence over % and x has precedence over +.
For example,

a+ bxcmeansa+ (b *c)andnot (a + b)  c; a % b meansa (b)) and not (a x b)
Of course when a + b * c is written a + bc then the meaning is clear.

EXAMPLE 1

(a) Let B = {0, 1}, the set of bits (binary digits), with the binary operations of + and % and the unary operation’
defined by Fig. 15-1. Then B is a Boolean algebra. (NoteJ simply changes the bit, i.e., ) =0and 0 = 1.)
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Fig. 15-1

(b) LetB" = B x B x ... xB (n factors) where the operations of 4+, x, and’ are defined componentwise using
Fig. 15-1. For notational convenience, we write the elements of B as n-bit sequences without commas, e.g.,

X = 110011 and y = 111000 belong to B". Hence
x +y =111011, x*y = 110000, x' = 001100

Then B" is a Boolean algebra. Here 0 000 0O is the zero element,and 1 111 1 is the unitelement.
We note that B" has 2" elements. = e = e

(c) LetDyg =1{1,2,5,7, 10, 14, 35, 70}, the divisors of 70. Define +, %, and) on Dq by

70
a+b=Im(a,b), a*xb=gcd(a,b), da =

a
Then Dy is a Boolean algebra with 1 the zero element and 70 the unit

element.

(d) Let C be a collection of sets closed under the set operations of union, intersection, and complement. Then C
is a Boolean algebra with the empty set & as the zero element and the universal set U as the unit element.

Subalgebras, Isomorphic Boolean Algebras

Suppose C is a nonempty subset of a Boolean algebra B. We say C is a subalgebra of B if C itself is a
Boolean algebra (with respect to the operations of B). We note that C is a subalgebra of B if and only if C is

closed under the three operations of B, i.e., 4, x, and ). For example, {1, 2, 35, 70} is a subalgebra of D7 in
Example 15.1(c).
Two Boolean algebras B and B/ are said to be isomorphic if there is a one-to-one correspondence f B —. B’

which preserves the three operations, i.e., such that, for any elements, a, b in B,

S(a+b)=f(a)+f(b), Sf(axb)=f(a)xf(b) and f(a)=Ff(a)

15.1 DUALITY
The dual of any statement in a Boolean algebra B is the statement obtained by interchanging the operations
+ and *, and interchanging their identity elements 0 and 1 in the original statement. For example, the dual of
(1+a)x((b+0)=b is (O*%ka)+ (b*x1)=b
Observe the symmetry in the axioms of a Boolean algebra B. That is, the dual of the set of axioms of B is the
same as the original set of axioms. Accordingly, the important principle of duality holds in B. Namely,

Theorem 15.1 (Principle of Duality): The dual of any theorem in a Boolean algebra is also a theorem.

In other words, if any statement is a consequence of the axioms of a Boolean algebra, then the dual is also a
consequence of those axioms since the dual statement can be proven by using the dual of each step of the proof
of the original statement.

15.2 BASIC THEOREMS



Using the axioms [B4] through [B,4], we prove (Problem 15.5) the following theorem.

Theorem 15.2: Let g, b, c be any elements in a Boolean algebra B.

(i) Idempotent laws:
(5a) a+a=a (5b)a * a=a

(ii) Boundedness laws:
(6a) a+1=1 (6b)a x 0=0

(iii)  Absorption laws:
(7a) a+ (a* b)=a (7b)a * (a+ b) =a

(iv) Associative laws:
(8a)(a+ b))+ c=a+ (b+ c)(8b)(a*x b)* c=a* (b* c)

Theorem 15.2 and our axioms still do not contain all the properties of sets listed in Table 1-1. The next two
theorems give us the remaining properties.

Theorem 15.3: Let a be any element of a Boolean algebra B.

(i) (Unigueness of Complement) If a + x = 1and a * x = 0, then x = d’.
(ii) (Involution law) (¢!} = a. {iii)

(9a) 0 = 1. (9b) ¥ = 0.
Theorem 15.4 (DeMorgan’s laws): (10a) (a + bp = a % b. (10b) (axb) =d’ + b.

We prove these theorems in Problems 15.6 and 15.7.

15.3 BOOLEAN ALGEBRAS ASLATTICES

By Theorem 15.2 and axiom [B;} every Boolean algebra B satisfies the associative, commutative, and
absorption laws and hence is a lattice where .and age the join and meet operations, respectively. With respect to
this lattice, a 1, 1impliesa lapda 0 Qimplies0 a, forany elementa B. Thus B is a bounded lattice.
Furthermore, axioms B, and B, showthat B is also distributive and complemented. Conversely, every bounded,
distributive, and complemented &ttice L satisfies the axioms B, through[B4]. Accordi{]gbj, we have the following

Alternate Definition: A Boolean algebra B is a bounded, distributive and complemented lattice.
Since a Boolean algebra B is a lattice, it has a natural partial ordering (and so its diagram can be drawn).

Recall (Chapter 14) that we define a b when the equivalent conditionsa b b anda b a hold. Since
we are in a Boolean algebra, we can actBally say much more. + = % =

Theorem 15.5: The following are equivalent in a Boolean algebra:
(1) a+b=b, (2) axb=a, (3) dd+b=1, (4 axb =0

Thus in a Boolean alegbra we can write a < b whenever any of the above four conditions is known to be true.

EXAMPLE 2

(a) Consider a Boolean algebra of sets. Then set A precedes set B if A is a subset of B. Theorem 15.4 states
thatif A < B then the following conditions hold:

(1)AUB=B (2JANB=A (3J)AAUB=U (4)ANB =0



(b) Consider the Boolean algebra D;,. Then a precedes b if a divides b. In such a case, Icm(a, b) = b and
gcd(a, b) = a. For example, let a = 2 and b = 14. Then the following conditionshold:

(1) lecm(2,14) = 14. (3) lcm(2, 14) = lcm(35, 14) = 70.

(2) gcd(2,14) = 2. (4) gcd(2,14') = ged(2,5) = 1.

15.4 REPRESENTATION THEOREM

Let B be a finite Boolean algebra. Recall (Section 14.10) that an element a in B is an atom if a immediately
succeeds 0, that is if 0 g. Let A be the set of atoms of B and let P (A) be the Boolean algebra of all subsets of the
set A of atoms. By Theorem 14.8, each x @ in B can be expressed uniquely (except for order) as the sum (
join) of atoms, i.e., elements of A. Say,

x=a1+a+ -+ a

is such a representation. Consider the function f: B — P (A) defined by

f(X) = {all ay,..., ar}

The mapping is well defined since the representation is unique.

Theorem 15.6: The above mapping f: B — P (A) is an isomorphism.

Thus we see the intimate relationship between set theory and abstract Boolean algebras in the sense that
every finite Boolean algebra is structurally the same as a Boolean algebra of sets.

If a set A has n elements, then its power set P (A) has 2" elements. Thus the above theorem gives us our
next result.

Corollary 15.7: A finite Boolean algebra has 2" elements for some positive integer n.

EXAMPLE 15.3 Consider the Boolean algebra D7y 12 5,..., 70 whoge diagram is given in Fig. 15-2(a). Note
that A 2,5,Z {is the set of atoms of Dyq. The following is the unique representation of each nonatom by atoms:

10=2v5, 14=2v7, 35=5v7, 70=2Vv5Vv7

Figure 15-2(b) gives the diagram of the Boolean algebra of the power set P (A) of the set A of atoms. Observe
that the two diagrams are structurally the same.

(a) D, (b) P(4)

Fig. 15-2

15.5 SUM-OF-PRODUCTS FORM FOR SETS

This section motivates the concept of the sum-of-products form in Boolean algebra by an example of set
theory. Consider the Venn diagram in Fig. 15-3 of three sets A, B, and C. Observe that these sets partition the



Fig. 15-3

rectangle (universal set) into eight numbered sets which can be represented as follows:

(1) ANBNC (3) ANBNC (5 ANBNC (7) ASNB°NC
(2) ANBNCS (4 ANBNC (6) AANBNC (8 A°N BSNCE

Each of these eight sets is of the form A* N B* N C* where:

A* = Aor AS, B* = B or BS, Cx=CorcC
Consider any nonempty set expression E involving the sets A, B, and C, say,
E=[(AN BY) U (AN C)IN [(B° U C)* N (AU )]

Then E will represent some area in Fig. 15-3 and hence will uniquely equal the union of one or more of the eight
sets.

Suppose we now interpret a union as a sum and an intersection as a product. Then the above eight sets are
products, and the unique representation of E will be a sum (union) of products. This unique representation of E
is the same as the complete sum-of-products expansion in Boolean algebras which we discuss below.

15.6 SUM-OF-PRODUCTS FORM FOR BOOLEAN ALGEBRAS

Consider a set of variables (or letters or symbols), say Xq, Xo, ..., X,. A Boolean expression E in these
variables, sometimes written E(Xy, ..., Xg), iS any variable or any expression built up from the variables using

the Boolean operations +, %, andJ. (Naturally, the expression E must be well-formed, that is, where + and x are
used as binary operations, and is used as a unary operation.) For example,

Ei=(x+yz)+ (xy2 + xXy) and E; = ((xy)2 +y) + xz)
are Boolean expressions in x, y, and z.

A literal is a variable or complemented variable, such as x, xJ, y, yJ, and so on. A fundamental product is a
literal or a product of two or more literals in which no two literals involve the same variable. Thus

xz, xy'z, x, y, xyz

are fundamental products, but xyx'z and xyzy are not. Note that any product of literals can be reduced to

either 0 or a fundamental product, e.g., )_(nyz 0 since_xxJ 0 (complement law), and xyzy  xyz since yy
y (idempotent law). - - - -

A fundamental product P is said to be contained in (or included in) another fundamental product P, if the
literals of P, are also literals of P,. For example, x)z is contained in x)yz, but x'z is not contained in xy’z since
x) is not a literal of xy!z. Observe that if P4 is contained in P, say P, = P4 % Q, then, by the absorption law,

P1+ P2:P1+ Pl* Q:P]_

Thus, for instance, X}z + X)yz = xJz.



Definition Boolean expression E is called a sum-of-products expression if E is a fundamental product or the
sum of two or more fundamental products none of which is contained in another.

Definition 15.2: Let E be any Boolean expression. A sum-of-products form of E is an equivalent Boolean sum-
of-products expression.

EXAMPLE .4 Consider the expressions
Ei=xZ+yz+xyzZ2 and E, =x2Z2+xyZ+ xy'z

Although the first expression E; is a sum of products, it is not a sum-of-products expression. Specifically,
the product x2 is contained in the product xyz'. However, by the absorption law, E; can be expressed as

Ei=xZ+yz+ xy2 =x2 + xy2 + y'z=x2 + yz

This yields a sum-of-products form for E;. The second expression E; is already a sum-of-products expression.

EXAMPLE 5 Suppose Algorithm 15.1 is applied to the following Boolean expression:
E=(xy)z)((x + z)(y' + 2))
Step 1. Using DeMorgan’s laws and involution, we obtain
E=xyWw+2)((x+2z)+(y+2))=(xy+2)xz +yz)E
now consists only of sums and products of literals.
Step 2. Using the distributive laws, we obtain
E = xyxZ + xyyz + x22 + yzz
E now is a sum of products.
Step 3. Using the commutative, idempotent, and complement laws, we obtain

E =xyzZ +xyz+xzZ +0

Each term in E is a fundamental product or 0.

Step 4. The product xZ is contained in xyZ; hence, by the absorption law,
X2 + (x2y) = x2

Thus we may delete xyz' from the sum. Also, by the identity law for 0, we may delete 0 from the sum.
Accordingly,

E =xyz+ x2

E is now represented by a sum-of-products expression.

Complete Sum-of-Products Forms

A Boolean expression E E{xq, X»,..., Xp) is said to be a complete sum-of-products expression if E is a sum-
of-products expression where each product P involves all the n variables. Such a fundamental product P which
involves all the variables is called a minterm, and there is a maximum of 2" such products for n variables. The



following theorem applies.

Theorem : Every nonzero Boolean expression E = E(xq, X,..., Xp) is equivalent to a complete
sum-of-products expression and such a representation is unique.

The above unique representation of E is called the complete sum-of-products form of E. Algorithm 15-1 in
Fig. 15-4 tells us how to transform E into a sum-of-products form. Figure 15-5 contains an algorithm which
transforms a sum-of-products form into a complete sum-of-products form.

Algorithm 15.2: The input is a Boolean sum-of-products expression £ = E(x},x3,...,x,). The
output is a complete sum-of-products expression equivalent to E.

Step 1. Find a product P in E which does not involve the variable x;, and then multiply P by
x; + x;, deleting any repeated products. (This is possible since x;+x/ =1, and
P+P=P)

Step 2. Repeat Step 1 until every product P in E is a minterm, i.e., every product P involves all
the variables,

Fig. 15-5

EXAMPLE .6 Express E(x, y, z) = x(y'z) into its complete sum-of-products form.
(d) Apply Algorithm 15.1 to E so E is represented by a sum-of-products expression:
E=x(yz) =x(y+2)=xy+x2

(b) Now apply Algorithm 15.2 to obtain:
E=xy(z+2)+x2(y +y) = xyz+ xy2 + xy2 + xy'2

= Xxyz + xy2Z + xy'2

Now E is reprsented by its complete sum-of-products form.
15.7 MINIMAL BOOLEAN EXPRESSIONS, PRIME IMPLICANTS

There are many ways of representing the same Boolean expression E. Here we define and investigate a
minimal sum-of-products form for E. We must also define and investigate prime implicants of E since the
minimal sum-of-products involves such prime implicants. Other minimal forms exist, but their investigation lies
beyond the scope of this text.

Minimal Sum-of-Products

Consider a Boolean sum-of-products expression E. Let E; denote the number of literals in E (counted
according to multiplicity), and let E5 denote the number of summands in E. For instance, suppose

E = xyZ + Xy't + xy'2t + xX'yzt

Then E; 3 3 4 4 1l4andEs 4.
=+ + + = =

Suppose E and F are equivalent Boolean sum-of-products expressions. We say E is simpler than F if:

(i) E, <F, andEs< F,, or (i) E; < Fpand Es< F;

We say E is minimal if there is no equivalent sum-of-products expression which is simpler than E. We note that
there can be more than one equivalent minimal sum-of-products expressions.



Prime Implicants

A fundamental product P is called a prime implicant of a Boolean expression E if
P+E=E
but no other fundamental product contained in P has this property. For instance, suppose
E =xy' + xyZ + xly2
One can show (Problem 15.15) that:

xZ2+E=E but x+E/=E and Z+E/=E

Thus xZ is a prime implicant of E.
The following theorem applies.
Theorem 15.9: A minimal sum-of-products form for a Boolean expression E is a sum of prime implicants of E.

The following subsections give a method for finding the prime implicants of E based on the notion of the
consensus of fundamental products. This method can then be used to find a minimal sum-of-products form for E.
Section 15.12 gives a geometric method for finding such prime implicants.

Consensus of Fundamental Products

Let P, and P, be fundamental products such that exactly one variable, say x,, appears uncomplemented
in one of P; and P, and complemented in the other. Then the consensus of P, and P, is the product (without

repetitions) of the literals of P, and the literals of P, after x, and x, are deleted. (We do not define the consensus
of P, =xand P, =¢.)

The following lemma (proved in Problem 15.19) applies.

Lemma 15.10: Suppose Q is the consensus of P;and P,. Then P1 + P, + Q= P, + P,.

EXAMPLE .7 Find the consensus Q of P; and P, where:

(@) Pi= xyZsand P, = xy't.
Delete y and yJ and then multiply the literals of P, and P, (without repetition) to obtain Q = xz'st.
(b) Pi= xy!and P, =y.

Deleting y and y! yields Q = x.

(¢) P1= Xyz and P, = Xlyt.

No variable appears uncomplemented in one of the products and complemented in the other. Hence P, and
P, have no consensus.

(d) Py = Xyzand P, = xyZ.

Each of x and z appear complemented in one of the products and uncomplemented in the other. Hence P,
and P, have no consensus.

Consensus Method for Finding Prime Implicants

Figure 15-6 contains an algorithm, called the consensus method, which is used to find the prime implicants
of a Boolean expression E. The following theorem gives the basic property of this algorithm.



Theorem: The consensus method will eventually stop, and then E will be the sum of its prime implicants.

EXAMPLE .8 LetE = xyz+ x'Z + xyZ + X}y)z + xX)yZ. Then:

E=xyz+ X2 + xy2 + Xylz (XyZ includes x)2))

=xyz+ Xy} + xyZ + X}y)z+ xy  (consensus of xyz and xyZ)

=xZ + xylz + xy (xyz and xyZ include xy)
=xZ + xXylz + xy + Xy (consensus of X2 and xy)z)
=xZ + xy + Xy (X'y)z includes x'y!)

=xZ +xy + Xy + yZ (consensus of X)Z and xy)

Now neither step in the consensus method will change E. Thus E is the sum of its prime implicants, which appear
in the last line, that is, X2, xy, x}yJ, andyZ.

Boolean Functions

Let E be a Boolean expression with n variables xq, X5,..., X,. The entire discussion above can also be
applied to E where now the special sequences are assigned to the variables x4, X»,..., X, instead of the input
devices Ay, A,,..., A,. The truthtable T T (E) of E is defined in the same way as the truth table T T(L) for
a logic circuit L. For example, the Boolean expression

E = xyz + xy'z + xly
which is analogous to the logic circuit L in Example 15.12, yields the truth table

T (00001111, 00110011, 01010101) = 00110101

or simply T (E) = 00110101, where we assume the input consists of the special sequences.

Remark: The truth table for a Boolean expression E -E(x4, X»,..., Xp) With n variables may also be viewed as
a “Boolean” function from B" into B. (The Boolean algebras B"and B 0,4 fre defined in Example 15.1.) That
is, each element in B is a list of n bits which when assigned to the list of variables in E produces an element in B.
The truth table T (E) of E is simply the graph of the function.

EXAMPLE

(a) Consider Boolean expressions E E{x, y, z) with three variables. The eight minterms (fundamental prod- ucts
involving all three variables) are as follows:

xyz, xyz, xy'z, Xyz, xy'zZ, xXyz, xy2z
The truth tables for these minterms (using the special sequences for ¥, y, z) follow:

xyz = 00000001, xyZ = 00000010, xy'z= 00000100, x'yz = 00001000

Xy'z = 00010000, x'yz = 00100000, xJy'z = 01000000, x'y'z = 10000000

Observe that each minterm assumes the value 1 in only one of the eight positions.



(b)

Consider the Boolean expression E xy2 xlyz ¥ylz. Nate that E is a complete sum-of-products expression
containing three minterms. Accordingly, the truth table T T (E) for E, using the special sequences for x, y,
Z, can be easily obtained from the sequences in part (a). Specifically, the truth table T (E) will contain exactly
three 1’sin the same positions as the 1’s in the three minterms in E. Thus

T(00001111, 00110011, 01010101) = 01001010

or simply T (E) = 01001010.

Solved Problems

BOOLEAN ALGEBRAS

15.1. Write the dual of each Boolean equation: (a)(a * 1) % (0+ d’') =0; (b)a +a'b=a + b.

15.2.

15.3.

(a) Toobtain the dual equation, interchange + and *, and interchange 0 and 1. Thus
(a+0)+(1xa) =1

(b) First write the equation using toobtaina (¢ b) a b.Thenthedualisa (¢ b) ab,whichcan
be written as * + x =+ *  + =%

afal + b)=ab
Recall (Chapter 14) that the set D,, of divisors of m is a bounded, distributive lattice with
a+b=aVb=Ilcm(a,b) and a*xb=a Ab=gcd(a,b).

(@) Show that D,,is a Boolean algebra if m is square free, i.e., if m is a product of distinctprimes.
(b) Find the atoms of Dy,

(8) We need only show that D,,is complemented. Let x be in D,,and let ¥ = m/x. Since m is a product of distinct

primes, x and ¥ have different prime divisors. Hence x * x = gcd(x, ¥) = Landx + ¥ = lcm(x, ¥) = m.
Recall that 1 is the zero element (lower bound) of D,, and that m is the identity element (upper bound) of D,,,.
Thus ¥ is a complement of x, and so D, is a Boolean algebra.

(b) The atoms of D,,are the prime divisors of m.

Consider the Boolean algebra D,1p.

(a) List its elements and draw its diagram.

(b) Find the set A of atoms.

(c) Find two subalgebras with eight elements.

(d) IsX ={1,2,6,210} a sublattice of D,15? Asubalgebra?

(e) IsY =1{1,2,3, 6} a sublattice of D,109? A subalgebra?

(a) The divisors of 210 are 1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, and 210. The diagram of D,,,appears

in Fig. 15-25.

(b) A = {2, 3, 5, 7}, the set of prime divisors of 210.



(c)B=11,2,3,35,6, 70, 105, 210} and C = {1, 5, 6, 7, 30, 35, 42, 210} are subalgebras of D,,,.

(d) X is a sublattice since it is linearly ordered. However, X is not a subalgebra since 35 is the complement of 2

(©)

in D5,y but 35 does not belong to X. (In fact, no Boolean algebra with more than two elements is linearly
ordered.)

Y is a sublattice of D,,4since it is closed under + and *. However, Y is not a subalgebra of D,,, since it is not

closed under complements in D,,,, e.8., 35 = 2 does not belong to Y. (We note that Y itself is a Boolean algebra;
in fact, Y = Dg.)



210

T R

42 0 105

=

6 10 14 15 21 3b

Y~
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15.4. Find the number of subalgebras of D;1q.

15.5.

A subalgebra of D,,, must contain two, four, eight or sixteen elements.

(i) There can be only one two-element subalgebra which consists of the upper bound 210 and lower bound 1,
i.e.,

{1, 210}.

(ii) Since D,;,contains sixteen elements, the only sixteen-element subalgebra is D, itself.

(iii) Any four-element subalgebra is of the form {1,x,x, 210}, i.e., consists of the upper and lower bounds and a
nonbound element and its complement. There are fourteen nonbound elements in D,,,and so there are 14/2

=7 pairs {x, ¥'}. Thus D,,,has seven four-element subalgebras.

(iv) Any eight-element subalgebra S will itself contain three atoms s, s,, s;. We can choose s, and s, to be any two
of the four atoms of D,,5and then s; must be the product of the other two atoms, e.g., we canlets; = 2,5, =
3,53=>5 - 7 = 35 (which determines the subalgebra Bzabove), orwecanlets;=5,s,=7,s;= 2 - 3 = 6(which
determines the subalgebra C above). There * = 6 ways to choose s, and s, from the four atoms of D,y
are and so D, has six eight-element

Accordingly, D,;ohas 1 + 1 + 7 + 6 = 15 subalgebras.

Prove Theorem 15.2: Let a, b, ¢ be any element in a Boolean algebraB.

(i) Idempotent laws:
(5a) a+a=a (5b)a * a=a

(if) Boundedness laws:
(6a) a+1=1 (6b)a* 0=0

(iii) Absorption Laws:
(7a) a+ (ax b)=a (7b)a * (a+ b) =a

(iv) Associative Laws:

(8a) (a+b)+c=a+ (b+c) (8b) (a* b)* c=ax (b* c)

(5b) a=axl=ax%x(a+d)=(axa)+(axd)=(a*xa)+0=axa(5a)
Follows from (5b) and duality.

(6b) ax0=(a%0)+0=(ax0)+(axd’)=ax(0+d)=a%x(d+0)=axd =
(6a) Follows from (6b) and duality.

(7b) a* (a+b)=(a+0)* (a+b)=a+(0*xb)=a+(b*x0)=a+0=a(7a)
Follows from (7b) and duality.



(8b) LetlL (a b) candR a (b c).We needtoprovethatL  R.We first provethata L
Using the ab¥orpfon laws imtheTast &vo steps, =

a+l=a+((axb)xc)=(a+ (a*x b)) *(a+c)=a* (a+c)=a



Also, using the absorption law in the last step,
a+R=a+ (ax(bxc))=(a+a)x (a+ (b*kc)=a*x (a+ (b*kc))=a
Thusa + L = a + R. Next we show thata’ + L = @’ + R. We have,
a+L=ad +(laxb)xc)=(a+(axb))x(a+c)
=((a+a)x(a+b))x(a+c)=(1x(a)+b))*(a + )
=(a+b)x(ad+c)=a +(bxc)
Also,
ad+R=ad+(ax(bxc)) =(a+a)x(a+(bxc)
=1%(ad+(bxc))=a + (bxc)
Thus @ + L = @ + R. Consequently,
L=0+L=(axa)+L=(a+L)x(a+L)=(a+R)*(a+R)

=(axa))+R=0+R=R

(8a) Follows from (8b) and duality.

15.6. Prove Theorem 15.3: Let a be any element of a Boolean algebra B.

(i) (Uniqueness of Complement) Ifa + x = 1and a * x = 0, thenx =d.
(i) (Involution Law) (d') = a
(i) (9a) © =1;(9b) 1 =O0.

(i) We have:
ad=ad+0=ad+(axx)=(ad+a)x(a+x)=1%(a +x)=0a +x
Also,
XxX=x+0=x+(a*%xad)=(x+a)x(x+ad)=1x(x+a)=x+ad
Hencex =x+d =d + x = d.

(ii) By definition of complement, a + @’ = 1and a * & = 0. By commutativity, &> + ¢ = 1andd’ * a = 0. By
uniqueness of complement, a is the complement of ¢, that is, a = (d@’).

(iii) By boundedness law (6a), 0 + 1 = 1, and by identity axiom (3b), 0 * 1 = 0. By uniqueness of complement,
1is the complement of 0, that is, 1 = ¢'. By duality, 0 = 1.

15.7. Prove Theorem 15.4: (DeMorgan’s laws): (10a) (a + b)) = @ * b. (10b) (a * b) = &’ + b’

(10a) We need to show that (a + b) + (¢’ x b’) = 1and (a + b) x (&’ ¥ B') = 0; then by uniqueness of complement,

o x b = (a+b). We have:

(a+b)+(adxb)=b+a+(axb)=b+(a+a)x(a+b)



=b+1%x(a+b)=b+a+b=b+b+a=1+a=1

Also,

(a+ b)x(a)xb)=((a+b)xa)xb

=(laxa)+(bxa))xb =0+ (bxa))*xb

=(bxa)xb =(bxb)xa =0%xa =0

Thus o’ % b = (a + b).

(10b) Principle of duality (Theorem 15.1).



15.8. Prove Theorem 15.5: The following are equivalent in a Boolean algebra:
(1)a+b=0b;, (2)axb=a;, (3)add+b=1;, (4)axb =0.
By Theorem 14.4, (1) and (2) are equivalent. We show that (1) and (3) are equivalent. Suppose (1) holds. Then
ad+b=ad+(a+b)=(a+a)+b=1+b=1
Now suppose (3) holds. Then
a+b=1%x(a+b)=(a+b)x(a+b)=(a'*a)+b=0+b=0>b
Thus (1) and (3) are equivalent.
We next show that (3) and (4) are equivalent. Suppose (3) holds. By DeMorgan’s law and involution,
O=U=(ad+b) =alxb =axbl
Conversely, if (4) holds then
1=0=(axb)=a+bV=0a+b
Thus (3) and (4) are equivalent. Accordingly, all four are equivalent.
15.9. Prove Theorem 15.6:The mappingf B — P(A)isanisomorphism where B is a Boolean algebra, P(A)
is the power set of the set A of atoms, and

fix) = {ay, ay,..., an}

where x = a; + - -+ + a, is the unique representation of a as a sum of atoms.
Recall (Chapter 14) that if the a’s are atoms then a2 = abutaa = Ofora /= a . Suppose x, y are in B and

suppose 4 d ) I

x=a,+ - +a,+b + - +b,
y=b+ -+ +b+c,+ - +c
where

A={ay,..., a, by.. b, cy..c.,dy..., d}
is the set of atoms of B. Then

X+y=a,+ - +a,+b+ - +b+c,+: " +¢
xy=by+ b

S

Hence
Let Thus
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e b YU {by,..., b, €y, €1}

=f(x)VrLly)
f(Xy) = {bll"'l bs}

= {ay..., a,, by,..., b;}n {by,..., b, cy,..., ¢; }

=fx)nfiy

y=¢+ +¢+d + +d.Thenx+y=1andxy =0, andsoy = xJ

f(XJ):{Cll“'lcldll“'ldk}:{al/“'/a!bll"'/b}cz (f(x))c

B



Since the representation is unique, f is one-to-one and onto. Hence f is a Boolean algebra isomorphism.

Solved Problem

Q 1Write the dual of each Boolean equation: (a) (a * 1) % (0+¢!) = 0; (b)a + &'b = a + b.

(a) Toobtain the dual equation, interchange + and *, and interchange 0 and 1. Thus
(a+0)+ (1xa)) =1

(b) First write the equation using toobtaina (¢ b) a b.Thenthedualisa (¢ b) ab, whichcan
be written as * + ok =+ o+ =X

afal + b) =ab
2 .Recall (Chapter 14) that the set D, of divisors of m is a bounded, distributive latticewith
a+b=aVb=Ilcm(a,b) and a*xb=aAb=gcd(a,b)

i Show that D, is a Boolean algebra if m is square free, i.e., if mis a product of distinct primes.
ii. Find the atoms of D,,.

() Weneed only show that D,,is complemented. Let x be in D,,and let ¥ = m/x. Since m is a product of distinct

primes, x and x! have different prime divisors. Hence x * x' = gcd(x, ¥) = 1land x + ¥ = 1lcm(x, ¥) = m.
Recall that 1 is the zero element (lower bound) of D,, and that m is the identity element (upper bound) of D,,,.

Thus ¥ is a complement of x, and so D, is a Boolean algebra.

(d) The atoms of D, are the prime divisors of m.
b. Consider the Boolean algebra D;g.

i List its elements and draw its diagram.
ii. Find the set A of atoms.
iii. Find two subalgebras with eight elements.
iv. Is X = {1, 2, 6,210} a sublattice of D;;¢? Asubalgebra?
V. IsY = {1, 2, 3, 6} a sublattice of Dy;1¢? A subalgebra?

(a) The divisors of 210 are 1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, and 210. The diagram of D,,,appears
(b) A = {2, 3, 5, 7}, the set of prime divisors of 210.
(c)B=1{1,2,3,35,6, 70, 105, 210} and C = {1, 5, 6, 7, 30, 35, 42, 210} are subalgebras of D,,.

(f) X is a sublattice since it is linearly ordered. However, X is not a subalgebra since 35 is the complement of 2
in D,;o but 35 does not belong to X. (In fact, no Boolean algebra with more than two elements is linearly
ordered.)

(9) VYis a sublattice of D,y since it is closed under + and *. However, Y is not a subalgebra of D,,,since it is not
closed under complements in D,;,, e.g., 35 = 2 does not belong to Y. (We note that Y itself is a Boolean algebra;
in fact, Y = Dg.)
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Find the number of subalgebras of D;.
A subalgebra of D,,, must contain two, four, eight or sixteen elements.

(v) There can be only one two-element subalgebra which consists of the upper bound 210 and lower bound 1,
i.e.,

{1, 210}.

(vi) Since D,;,contains sixteen elements, the only sixteen-element subalgebra is D, itself.

(vii) Any four-element subalgebra is of the form {1,x,x, 210}, i.e., consists of the upper and lower bounds and a
nonbound element and its complement. There are fourteen nonbound elements in D,;,and so there are 14/2

=7 pairs {x, ¥}. Thus D,,, has seven four-element subalgebras.

(viii) Any eight-element subalgebra S will itself contain three atoms s, s,, s;. We can choose s, and s, to be any two
of the four atoms of D,,;and then s; must be the product of the other two atoms, e.g., wecanlet s, = 2, s, =
3,5;= 5+ 7 = 35 (which determines the subalgebra_ Bzabove), orwecanlets;=5,s,=7,s;= 2 - 3= 6(which

determines the subalgebra C above). There " = 6 ways to choose s, and s, from the four atoms of D,y
are and so D, has six eight-element

Accordingly, D,;ohas 1 + 1 + 7 + 6 = 15 subalgebras.

Prove Theorem 15.2: Let a, b, c be any element in a Boolean algebra B.

(v) Idempotent laws:
(5a) a+a=a (5b)a * a=a

(vi) Boundedness laws:
(6a) a+1=1 (6b)a* 0=0

(vii) Absorption Laws:
(7a) a+ (ax b)=a (7b)a * (a+ b) =a

(viii) Associative Laws:

(8a) (a+ b)+c=a+ (b+¢) (8b) (a* b)*x c=a* (b* c)

(5b) a=axl=ax%x(a+d)=(axa)+(axd)=(axa)+0=axa(5a)
Follows from (5b) and duality.

(6b) ax0=(a%0)+0=(ax0)+(axd’)=ax(0+d)=a%*(d+0)=a%xd =0

(6a) Follows from (6b) and duality.

(7b) a* (a+b)=(a+0)* (a+b)=a+(0*xb)=a+(b*x0)=a+0=a(7a)
Follows from (7b) and duality.



(8b) LetlL (a b) candR a (b c).We needtoprovethat L R.We first provethata L a R
Using the ab¥orption laws imthefast #vo steps, = + = +

atl=a+((axb)*kc)=(a+(a*xb))*(a+c)=a*x(a+c)=a
Also, using the absorption law in the last step,
a+R=a+(ax(bxc))=(a+a)*x (a+(bkc)=a*x (a+(b*kc))=a
Thusa + L = a + R. Next we show thata’ + L = @’ + R. We have,
a+L=ad +((axb)xc)=(a+(axb))x(a+c)
=((d+a)x(a+b))x(a+c)=(1x(a)+b))*(a + )
=(ad+b)x(ad+c)=a + (bxc)
Also,
ad+R=a+(ax(bxc))=(a+a)x(a +(bxc)
=1%x(al+(bxc))=a + (b*c)
Thus & + L = & + R. Consequently,
L=0+L=(axad)+L=(a+L)x(a+L)=(a+R)*(a+R)
=(axd)+R=0+R=R

(8a) Follows from (8b) and duality.

Prove Theorem 15.3: Let a be any element of a Boolean algebra B.

(iif) (Uniqueness of Complement) If a + x = 1 and a * x = 0, then x = d’.
(iv) (Involution Law) (d’) = a
(iii) (9a) O =1;(9b) 2V =0.

(iv) We have:
ad=ad+0=ad+(axx)=(dd+a)x(a+x)=1%(a)+x)=a +x
Also,
XxX=x+0=x+(a*%xad)=(x+a)x(x+ad)=1x(x+a)=x+ad
Hencex =x+d =d + x =d.

(v) By definition of complement, a + ¢’ = 1and a * o = 0. By commutativity, @ + a = 1andd * a = 0. By
uniqueness of complement, a is the complement of &, thatis, a = (d’).

(vi) By boundedness law (6a), 0 + 1 = 1, and by identity axiom (3b), 0 * 1 = 0. By uniqueness of complement,
1is the complement of 0, that is, 1 = @'. By duality, 0 = 1.

Prove Theorem 15.4: (DeMorgan’s laws): (10a) (a + b)) = & % b'. (10b) (a * b)) = & + b,

(10a) We need to show that (@ + b) + (¢’ * ') = 1 and (a + b) * (¢’ x b') = 0; then by uniqueness of complement,



a % b = (a+ b). We have:
(a+b)+(adxb)=b+a+(axb)=b+(a+a)x(a+b)
=b+1x(a+b)=b+a+b=b+b+a=1+a=1
Also,
(a+ b)x(axb)=((a+b)xa)xb
=(laxa)+(bxa))xb =0+ (bxa))*xb
=(bxa)xb =(bxb)xa =0%xa =0
Thusd x b = (a + b).
Prove Theorem : The following are equivalent in a Boolean algebra:
(1)a+b=0b;, (2)axb=a;, (3)add+b=1;, (4)axb =0.
By Theorem 14.4, (1) and (2) are equivalent. We show that (1) and (3) are equivalent. Suppose (1) holds. Then
ad+b=ad+(a+b)=(a+a)+b=1+b=1
Now suppose (3) holds. Then
a+b=1x(a+b)=(a+b)x(a+b)=(a'xa)+b=0+b=>b

Thus (1) and (3) are equivalent.

We next show that (3) and (4) are equivalent. Suppose (3) holds. By DeMorgan’s law and involution,
O=VU=(ad+b) =alxb =axb

Conversely, if (4) holds then

1=0=(axb)=a+bV=a+b

Thus (3) and (4) are equivalent. Accordingly, all four are equivalent.

Prove Theorem 15.6: The mapping f B — P(A)isanisomorphism where B is a Boolean algebra, P(A)
is the power set of the set A of atoms, and

fix) = {ay, ay,..., a,,}

where x = a; + - -+ + a,is the unique representation of a as a sum of atoms.
Recall (Chapter 14) that if the a’s are atoms then a2 = abutaa = Ofora /= a . Suppose x, y are in B and

suppose i d ) I

x=a;+ - +a,+b + -+ +b
y=b,+: -+ +b+c,+ +c

where



A={ay,..., a, by,.., b, cy..c,dy,... d}
is the set of atoms of B. Then

x+ty=a,++a,+b++btc,+  +¢
xy=b,+ - b,

Hence
f(x+y)=1{ay...,a, by.., b, cy..., ¢, }
= {ay,..., a,, by,..., b }U {b,,..., b, c4,..., C; }
= f(x) Y fly)
fixy) ={by,..., b}
Let = {ay,..., a,, by,..., b;}n {by,..., b, cy,..., ¢; }
=f(x)Nfy)
Thus

y=¢+ +¢+d + +d.Thenx +y=1andxy =0, andsoy = xJ

f(xJ):{cl,...,c,dl,...,dk}z{al,...,a,bl,...,b}cz (f(x))

Since the representation is unique, f is one-to-one and onto. Hence f is a Boolean algebra isomorphism.
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Unit: Graphs and Trees

Definition: The is a figure consist of points or nodes called vertices which are connected to each other
by way of lines called edges. These lines may be directed or undirected. A graph G consists of two
things:

(i) A set V =V (G) whose elements are called vertices, points, or nodes of G.
(ii) A set E = E(G) of unordered pairs of distinct vertices called edges of G.

We denote such a graph by G(V, E) when we want to emphasize the two parts of G. Vertices uand v
are said to be adjacent or neighbors if there is an edge e u, v .Insuch acase, uand v are called the
endpoints of e, and e is said to connect u and v. Also, the edge e is said to be incident on each of its
endpoints u and v. Graphs are pictured by diagrams in the plane in a natural way. Specifically, each
vertex v in V is represented by a dot (or small circle), and each edge e = {v1, v2} is represented by a
curve which connects its endpoints vl and v2 For example, Fig. 8-5(a) represents the graph G(V, E)
where:

(i) V consists of vertices A, B, C, D.

(i) E consists of edges el = {A, B}, e2 = {B, C}, e3 = {C, D}, e4 = {A, C}, e5 = {B, D}.

In fact, we will usually denote a graph by drawing its diagram rather than explicitly listing its vertices
and edges.

A D
€4
€y ey
B Ae_z C
(a) Graph {h) Multigraph
Fig. 1
Multigraphs

Consider the diagram in Fig. 1(b). The edges e4 and e5 are called multiple edges since they connect
the same endpoints, and the edge €6 is called a loop since its endpoints are the same vertex. Such a
diagram is called a multigraph; the formal definition of a graph permits neither multiple edges nor
loops. Thus a graph may be defined to be a multigraph without multiple edges or loops.

Remark: Some texts use the term graph to include multigraphs and use the term simple graph to
mean a graph without multiple edges and loops.



Degree of a Vertex

The degree of a vertex v in a graph G, written deg (v), is equal to the number of edges in G which
contain v, that is, which are incident on v. Since each edge is counted twice in counting the degrees of
the vertices of G, we have the following simple but important result.

Theorem 1: The sum of the degrees of the vertices of a graph G is equal to twice the number of edges
in G.

Consider, for example, the graph in Fig. 1(a). We have
deg(A) =2, deg(B) =3, deg(C) =3, deg(D) = 2.

The sum of the degrees equals 10 which, as expected, is twice the number of edges. A vertex is said to
be even or odd according as its degree is an even or an odd number. Thus A and D are even vertices
whereas B and C are odd vertices. Theorem 8.1: The sum of the degrees of the vertices of a graph G is
equal to twice the number of edges in G.

Theorem 1 also holds for multigraphs where a loop is counted twice toward the degree of its
endpoint. For example, in Fig. 1(b) we have deg(D) = 4 since the edge e6 is counted twice; hence D is
an even vertex.

A vertex of degree zero is called an isolated vertex.
Finite Graphs, Trivial Graph

A multigraph is said to be finite if it has a finite number of vertices and a finite number of edges.
Observe that a graph with a finite number of vertices must automatically have a finite number of
edges and so must be finite. The finite graph with one vertex and no edges, i.e., a single point, is
called the trivial graph. Unless otherwise specified, the multigraphs in this book shall be finite.

SUBGRAPHS, ISOMORPHIC AND HOMEOMORPHIC GRAPHS
Subgraphs

Consider a graph G = G(V, E). Agraph H = H(V J, EJ) is called a subgraph of G if the vertices and edges
of H are contained in the vertices and edges of G, that s, if VJ €V and EJ € E. In particular:

(i) A subgraph H(V J, EJ) of G(V, E) is called the subgraph induced by its vertices V J if its edge set
EJ

contains all edges in G whose endpoints belong to verticesin H .

(ii) If vis a vertex in G, then G v is the subgraph of G obtained by deleting v from G and
deleting all edges in G which contain v.

(iii) If eis an edge in G, then G - e is the subgraph of G obtained by simply deleting the edge e
from G.

Isomorphic Graphs

Graphs G(V, E) and G(V *, Ex) are said to be isomorphic if there exists a one-to-one correspondence f
VV * such that u, v is an edge of G if and only if f (u), f(v) is an edge of G*. Normally, we do not



distinguish between isomorphic graphs (even though their diagrams may “look different”). Figure 2
gives ten graphs pictured as letters. We note that A and R are isomorphic graphs. Also, Fand T are
isomorphic graphs, K and X are isomorphic graphs and M, S, V, and Z are isomorphic graphs

Fig.2
Given any graph G, we can obtain a new graph by dividing an edge of G with additional vertices. Two
graphs G and G* are said to homeomorphic if they can be obtained from the same graph or

isomorphic graphs by this method. The graphs (a) and (b) in Fig. 3 are not isomorphic, but they are
homeomorphic since they can be obtained from the graph (c) by adding appropriate vertices.

+ |
*—o—e
®
(b)

Fig.3

Homeomorphic Graphs

(a)

8.4 PATHS, CONNECTIVITY
A path in a multigraph G consists of an alternating sequence of vertices and edges of the form
vO, el, vl, e2, V2, e en-1, vn-1, en, vn

where each edge ei contains the vertices vi 1 and vi (which appear on the sides of ei in the sequence).
The number n of edges is called the length of the path. When there is no ambiguity, we denote a path
by its sequence of vertices (v0, v1,..., vn). The path is said to be closed if vO = vn. Otherwise, we say
the path is from vO0, to vn or between v0 and vn, or connects vO to vn.

A simple path is a path in which all vertices are distinct. (A path in which all edges are distinct will be
called

a trail.) A cycle is a closed path of length 3 or more in which all vertices are distinct except vO vn. A
cycle of length k is called a k-cycle.

EXAMPLE Consider the graph G in Fig. 4(a). Consider the following sequences:
o= (P4, P1, P2, P5, P1, P2, P3, P6), B = (P4, P1, P5, P2, P6),

vy = (P4, P1, P5, P2, P3, P5,P6), 6=(P4,P1, PS5, P3, P6).



The sequence a is a path from P4 to P6; but it is not a trail since the edge {P1, P2} is used twice. The
sequence B is not a path since there is no edge {P2, P6}. The sequence y is a trail since no edge is
used twice; but itis not a simple path since the vertex P5 is used twice. The sequence & is a simple
path from P4 to P6; but it is not the shortest path (with respect to length) from P4 to P6. The
shortest path from P4 to P6 is the simple path (P4, P5, P6) which has length 2.

A c
P, P, Py
*————o
P, P, Py D E F
(@) (b)
Fig.4

By eliminating unnecessary edges, it is not difficult to see that any path from a vertex u to a vertex v
can be replaced by a simple path from u to v. We state this result formally.

Theorem 2: There is a path from a vertex u to a vertex v if and only if there exists a simple path from u
tov.

Connectivity, Connected Components

A graph G is connected if there is a path between any two of its vertices. The graph in Fig. 8-8(a) is
connected, but the graph in Fig. 4(b) is not connected since, for example, there is no path between
vertices D and E.

Suppose G is a graph. A connected subgraph H of G is called a connected component of G if H is not
contained in any larger connected subgraph of G. It is intuitively clear that any graph G can be
partitioned into its connected components. For example, the graph G in Fig. 4(b) has three connected
components, the subgraphs induced by the vertexsets A,C,D,E,F,andB.

The vertex B in Fig. 4(b) is called an isolated vertex since B does not belong to any edge or, in other
words, deg(B) = 0. Therefore, as noted, B itself forms a connected component of the graph.

Remark: Formally speaking, assuming any vertex u is connected to itself, the relation “u is connected
to v” is an equivalence relation on the vertex set of a graph G and the equivalence classes of the
relation form the connected components of G.

Distance and Diameter

Consider a connected graph G. The distance between vertices u and v in G, written d(u, v), is the
length of the shortest path between u and v. The diameter of G, written diam(G), is the maximum
distance between any two points in G. For example, in Fig. 5(a), d(A, F) = 2 and diam(G) = 3, whereas
in Fig. 5(b),

d(A, F) = 3 and diam(G) = 4.



Cutpoints and Bridges

Let G be a connected graph. A vertex vin G is called a cutpoint if G v is disconnected. (Recall that G v
is the graph obtained from G by deleting v and all edges containing v.) An edge e of G is called a
bridge if G e is disconnected. (Recall that G e is the graph obtained from G by simply deleting the edge
e). In Fig. 5(a), the vertex D is a cutpoint and there are no bridges. In Fig. 5(b), theedge D,F isa
bridge. (Its endpoints D and F are necessarily cutpoints.)

B E

(a) Fig.5 (b)

TRAVERSABLE AND EULERIAN GRAPHS, BRIDGES OF KONIGSBERG

The eighteenth-century East Prussian town of Kénigsberg included two islands and seven bridges as
shown in Fig.6(a). Question: Beginning anywhere and ending anywhere, can a person walk through
town crossing all seven bridges but not crossing any bridge twice? The people of Konigsberg wrote to
the celebrated Swiss mathematician L. Euler about this question. Euler proved in 1736 that such a walk
is impossible. He replaced the islands and the two sides of the river by points and the bridges by curves,
obtaining Fig. 6(b).

Observe that Fig. 6(b) is a multigraph. A multigraph is said to be traversable if it “can be drawn without
any breaks in the curve and without repeating any edges,” that is, if there is a path which includes all
vertices and uses each edge exactly once. Such a path must be a trail (since no edge is used twice) and
will be called a traversable trail. Clearly a traversable multigraph must be finite and connected.




We now show how Euler proved that the multigraph in Fig. 8-10(b) is not traversable and hence that
the walk in Kénigsberg is impossible. Recall first that a vertex is even or odd according as its degree is
an even or an odd number. Suppose a multigraph is traversable and that a traversable trail does not
begin or end at a vertex P. We claim that P is an even vertex. For whenever the traversable trail
enters P by an edge, there must always be an edge not previously used by which the trail can leave P
. Thus the edges in the trail incident with P must appear in pairs, and so P is an even vertex. Therefore
if a vertex Q is odd, the traversable trail must begin or end at Q. Consequently, a multigraph with
more than two odd vertices cannot be traversable. Observe that the multigraph corresponding to the
Konigsberg bridge problem has four odd vertices. Thus one cannot walk through Kénigsberg so that
each bridge is crossed exactly once.

Euler actually proved the converse of the above statement, which is contained in the following
theorem and corollary. A graph G is called an Eulerian graph if there exists a closed traversable trail,
called an Eulerian trail.

Theorem .3 (Euler): A finite connected graph is Eulerian if and only if each vertex has even degree.

Corollary.4: Any finite connected graph with two odd vertices is traversable. A traversable trail may
begin at either odd vertex and will end at the other odd vertex.

Hamiltonian Graphs

The above discussion of Eulerian graphs emphasized traveling edges; here we concentrate on visiting
vertices. A Hamiltonian circuit in a graph G, named after the nineteenth-century Irish mathematician
William Hamilton (1803-1865), is a closed path that visits every vertex in G exactly once. (Such a
closed path must be a cycle.) If G does admit a Hamiltonian circuit, then G is called a Hamiltonian
graph. Note that an Eulerian circuit traverses every edge exactly once, but may repeat vertices, while
a Hamiltonian circuit visits each vertex exactly once but may repeat edges. Figure 7 gives an example
of a graph which is Hamiltonian but not Eulerian, and vice versa.

(@) Hamiltonian and non-Eulerian (b) Eulerian and non-Hamiltonian
Fig 7

Although it is clear that only connected graphs can be Hamiltonian, there is no simple criterion to tell
us whether or not a graph is Hamiltonian as there is for Eulerian graphs. We do have the following
sufficient condition which is due to G. A. Dirac.

Theorem 5: Let G be a connected graph with n vertices. Then G is Hamiltonian if n 3 and n deg(v) for
each vertexvin G.

LABELED AND WEIGHTED GRAPHS



A graph G is called a labeled graph if its edges and/or vertices are assigned data of one kind or
another. In particular, G is called a weighted graph if each edge e of G is assighed a nonnegative
number w(e) called the weight or length of v. Figure 8 shows a weighted graph where the weight of
each edge is given in the obvious way. The weight (or length) of a path in such a weighted graph G is
defined to be the sum of the weights of the edges in the path. One important problem in graph
theory is to find a shortest path, that is, a path of minimum weight (length), between any two given
vertices. The length of a shortest path between P and Q in Fig. 8 is 14; one such path is

(P, A1, A2, A5, A3, A6, Q)

The reader can try to find another shortest path.

COMPLETE, REGULAR, AND BIPARTITE GRAPHS

There are many different types of graphs. This section considers three of them: complete, regular,
and bipartite graphs.

Complete Graphs

A graph G is said to be complete if every vertex in G is connected to every other vertex in G. Thus a
complete graph G must be connected. The complete graph with n vertices is denoted by Kn. Figure 9
shows the graphs K1 through K6.

Regular Graphs

A graph G is regular of degree k or k-regular if every vertex has degree k. In other words, a graph is
regular if every vertex has the same degree.

The connected regular graphs of degrees 0, 1, or 2 are easily described. The connected 0-regular
graph is the trivial graph with one vertex and no edges. The connected 1-regular graph is the graph
with two vertices and one edge connecting them. The connected 2-regular graph with n vertices is the
graph which consists of a single n-cycle. See Fig. 10.

The 3-regular graphs must have an even number of vertices since the sum of the degrees of the
vertices is an even number (Theorem 1). Figure 11 shows two connected 3-regular graphs with six
vertices. In general, regular graphs can be quite complicated. For example, there are nineteen 3-
regular graphs with ten vertices. We note that the complete graph with n vertices Kn is regular of
degree n - 1.



K, = isolated vertex: @ K, = line segment: @——=@ Ky = triangle: A

K, Ks Kq
Fig.9
(i) 0-regular (it) 1-regular (iii) 2-regular
Fig 10.
3-regular Fig 11

Bipartite Graphs

A graph G is said to be bipartite if its vertices V can be partitioned into two subsets M and N such that
each edge of G connects a vertex of M to a vertex of N . By a complete bipartite graph, we mean that
each vertex of M is connected to each vertex of N ; this graph is denoted by Km,n where m is the
number of vertices in M and

n is the number of vertices in N, and, for standardization, we will assume m < n. Figure 12 shows the
graphs

K2,3, K3,3, and K2,4, Clearly the graph Km,n has mn edges.



Fig.12

TREE GRAPHS

A graph Tis called a tree if T is connected and T has no cycles. Examples of trees are shown in Fig. 8-
17. A forest G is a graph with no cycles; hence the connected components of a forest G are trees. A
graph without cycles is said to be cycle-free. The tree consisting of a single vertex with no edges is
called the degenerate tree.

Consider a tree T. Clearly, there is only one simple path between two vertices of T ; otherwise, the
two paths would form a cycle. Also:

(a) Suppose there is noedge u,v inT and we add the edge e u,vtoT. Then the simple
path fromutov

in T and e will form a cycle; hence T is no longer a tree.

(b) On the other hand, suppose thereisanedgee u,vinT,and we deleteefromT.ThenTis
no longer connected (since there cannot be a path from u to v); hence T is no longer a tree.

The following theorem applies when our graphs are finite.

Theorem 6: Let G be a graph with n > 1 vertices. Then the following are equivalent:

(i) Gis atree.
(ii) G is a cycle-free and has n - 1 edges.
(iii) G is connected and has n - 1 edges.

This theorem also tells us that a finite tree T with n vertices must have n 1 edges. For example, the
tree in Fig.1 3(a) has 9 vertices and 8 edges, and the tree in Fig. 13(b) has 13 vertices and 12 edges.
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Spanning Trees

A subgraph T of a connected graph G is called a spanning tree of G if Tis a tree and T includes all the
vertices of G. Figure 14 shows a connected graph G and spanning trees T1, T2, and T3 of G.

>, g

T, T, T,

Fig 14.
8.1 PLANAR GRAPHS

A graph or multigraph which can be drawn in the plane so that its edges do not cross is said to be planar.
Although the complete graph with four vertices K, is usually pictured with crossing edges as in Fig.15(a), it can
also be drawn with noncrossing edges as in Fig. 15(b); hence K, is planar. Tree graphs form an important class
of planar graphs. This section introduces our reader to these important graphs.

(N

(@) (b)
Fig 15

Maps, Regions

A particular planar representation of a finite planar multigraph is called a map. We say that the map is
connected if the underlying multigraph is connected. A given map divides the plane into various regions. For
example, the map in Fig. 16 with six vertices and nine edges divides the plane into five regions. Observe that
four of the regions are bounded, but the fifth region, outside the diagram, is unbounded. Thus there is no loss in
generality in counting the number of regions if we assume that our map is contained in some large rectangle
rather than in the entire plane.

Observe that the border of each region of a map consists of edges. Sometimes the edges will form a cycle,
but sometimes not. For example, in Fig. 16 the borders of all the regions are cycles except for r3. However, if we
do move counterclockwise around r5 starting, say, at the vertex C, then we obtain the closed path

(C,D,E,F, E,C)

where the edge £, F gecurs twice. By the degree of a region r, written deg(r), we mean the length of the cycle
or closed walk which borders r. We note that each edge either borders two regions or is contained in a region
and will occur twice in any walk along the border of the region. Thus we have a theorem for regions which is
analogous to Theorem 1 for vertices.

C
Ty
A B
D
Fig. 16

Theorem .7: The sum of the degrees of the regions of a map is equal to twice the number of edges.



The degrees of the regions of Fig. 16 are:
deg(ry) = 3, deg(rp) =3, deg(rs) =5, deg(rs) =4, deg(rs) =3

The sum of the degrees is 18, which, as expected, is twice the number of edges.
For notational convenience we shall picture the vertices of a map with dots or small circles, or we shall
assume that any intersections of lines or curves in the plane are vertices.

Euler’s Formula

Euler gave a formula which connects the number V of vertices, the number E of edges, and the number R
of regions of any connected map. Specifically:

Theorem 8 (Euler):V —E+ R = 2.

(The proof of Theorem 8.8 appears in Problem 8.18.)
Observe that, in Fig. 8-22, V = 6, E = 9, and R = 5; and, as expected by Euler’s formula.

V-E+R=6-9+5=2

We emphasize that the underlying graph of a map must be connected in order for Euler’s formula to hold.

Let G be a connected planar multigraph with three or more vertices, so G is neither K, nor K,. Let M be a
planar representation of G. It is not difficult to see that (1) a region of M can have degree 1 only if its border is a
loop, and (2) a region of M can have degree 2 only if its border consists of two multiple edges. Accordingly, if
G is a graph, not a multigraph, then every region of M must have degree 3 or more. This comment together with
Euler’s formula is used to prove the following result on planar graphs.

Theorem 9: Let G be a connected planar graph with p vertices and ¢ edges, where p > 3. Thenq > 3p — 6.

Note that the theorem is not true for K; where p = 1and g = 0, and is not true for K, wherep = 2
andg — 1.

Proof : Let r be the number of regions in a planar representation of G. By Euler’s formula, p — q + r = 2.
Now the sum of the degrees of the regions equals 2q by Theorem 8.7. But each region has degree 3 or more;

hence 2q = 3r. Thus r = 2¢/3. Substituting this in Euler’s formula gives

2=p—q+rsp—q+2—3q or Zsp—%L

Multiplying the inequality by 3 gives 6 < 3p — g which gives us our result. O

Nonplanar Graphs, Kuratowski’s Theorem

We give two examples of nonplanar graphs. Consider first the utility graph; that is, three houses A;, Ay, Az
are to be connected to outlets for water, gas and electricity, By, By, B3, as in Fig. 17(a). Observe that this is the
graph Ks 3 and it has p £ vertices and g 9=edges. Suppose the graph is planar. By Euler’s formula a planar
representation has r 5 regions. Observe that no three vertices are connected to each other; hence the degree of
each region must be 4 or more and so the sum of the degrees of the regions must be 20 or more. By Theorem 8.7
the graph must have 10 or more edges. This contradicts the fact that the graph has q = 9 edges. Thus the utility
graph Kj 3 is nonplanar.

Consider next the star graph in Fig. 17(b). This is the complete graph Kson p 5 sertices and has q 10 edges.
If the graph is planar, then by Theorem 9.

10=q<3p-6=15-6=9

which is impossible. Thus Ks is nonplanar.
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Theorem 10: (Kuratowski) A graph is nonplanar if and only if it contains a subgraph homeomorphic to K3 3

or K5.

8.2 GRAPH COLORINGS

Consider a graph G. A vertex coloring, or simply a coloring of G is an assignment of colors to the
vertices of G such that adjacent vertices have different colors. We say that G is n-colorable if there
exists a coloring of Gwhich uses n colors. for example, “paint” G rather than “color” G when we are
assigning colors to the vertices of G.) The minimum number of colors needed to paint G is called the
chromatic number of G and is denoted by x(G).

Fig. 18 gives an algorithm by Welch and Powell for a coloring of a graph G. We emphasize that
this algorithm does not always yield a minimal coloring of G.

Step 1.
Step 2.

Step 3.

Algorithm 8.4 (Welch-Powell): The input is a graph G.

Order the vertices of G according to decreasing degrees.

Assign the first color C; to the first vertex and then, in sequential order, assign C; to
each vertex which is not adjacent to a previous vertex which was assigned C,.

Repeat Step 2 with a second color C, and the subsequence of noncolored vertices.

Step 4. Repeat Step 3 with a third color Cj, then a fourth color Cy4, and so on until all vertices
are colored.
Step 5. Exit.
Fig 18
EXAMPLE

(a) Considerthegraph GinFig.19. We use the Welch-Powell Algorithm 8.4 to obtain a coloring of G. Ordering
the vertices according to decreasing degrees yields the following sequence:

A5/ A3/ A7/ Al/ A2/ A4/ AGI AS




Fig. 19

The first color is assigned to vertices As and A,. The second color is assigned to vertices As, A,
and Ag. The third color is assigned to vertices A;, A,, and Ag. All the vertices have been assigned
a color, and so G is 3-colorable. Observe that G is not 2-colorable since vertices A4, A,, and A3,

which are connected to each other, must be assigned different colors. Accordingly, x(G) = 3.

(b) Consider the complete graph K, with n vertices. Since every vertex is adjacent to every other vertex, K,
requires n colors in any coloring. Thus x(K,,) = n.

There is no simple way to actually determine whether an arbitrary graph is n-colorable.
However, the following theorem gives a simple characterization of 2-colorable graphs.

Theorem 11: The following are equivalent for a graph G:

(i) Gis2-colorable.
(ii) Gisbipartite.
(iii) Every cycle of G has even length.

There is no limit on the number of colors that may be required for a coloring of an arbitrary graph
since, for example, the complete graph K, requires n colors. However, if we restrict ourselves to
planar graphs, regardless of the number of vertices, five colors suffice. Specifically, in Problem 8.20
we prove:

Theorem 12: Any planar graph is 5-colorable.

Solved Problems

GRAPH TERMINOLOGY
8.1. Consider the graph G in Fig. 8-36(a).
(a) Describe G formally, that is, find the set V (G) of vertices of G and the set E(G) of edges of G.

(b) Find the degree of each vertex and verify Theorem 8.1 for this graph.

(@) There are five verticesso V(G) = {A, B, C, D, E . There are seven pairs x,{y of yertices where the vertexx is
connected with the vertex y, hence



E(G) = [{A B} {A cL {A, D}, {8, ¢}, 1B, E}, {C D}, {C, E}]

(b) The degree of a vertex is equal to the number of edges to which it belongs; e.g., deg(A) = 3 since A belongs to
the three edges {A, B}, {A, C}, {A, D}. Similarly,

deg(B) = 3, deg(C) = 4, deg(D) = 2, deg(E) = 2

The sum of the degreesis3 + 3 + 4 + 2 + 2 = 14 which does equal twice the number of edges.

B
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Fig. 8-36

8.2. Consider the graph G in Fig. 8-36(b). Find:

(a) allsimple pathsfromAtoF; (d ) diam(G), the diameter of G;
(b) all trails from Ato F; (e) all cycles which include vertexA;
(c) d(A, F), the distance fromAto F; (f)allcyclesinG.

(@) Asimple path from Ato F is a path such that no vertex, and hence no edge, is repeated. There are seven such
paths, four beginning with the edges {A, B}and three beginning with the ege {A, D}:

(A/B/ C/F)/ (A/B/ C;E/ F)/ (AIB/ EIF)/ (AIBI EI CIF)I

(A,D,E,F), (A D,EB,CF), (A, D,E,CF).

(b) A trail from A to Fis a path such that no edge is repeated. There are nine such trails, the seven simple paths
from
(a) together with
(A, D, E,B, C EF)and(A D, E, CB, E,F).

(c) Thereisapath,e.g., (A B, C,F), fromAto F of length 3 and no shorter path from Ato F; hence d(A, F) = 3.

(d) Thedistance between any two vertices is not greater than 3, and the distance from A to F is 3; hence diam(G) = 3.

(e) A cycleis a closed path in which no vertex is repeated (except the first and last). There are three cycles which
include vertex A:

(A,B,E,D,A), (AB,CED,A), (ABCFEDA).

() There are six cycles in G; the three in (e) and

(B,GEB) (CFEC), (BCFEB).



8.3. Consider the multigraphs in Fig. 8-37.

8.4.

(@) Which of them are connected? If a graph is not connected, find its connected components.
(b
(c

(d

)
) Which are cycle-free (without cycles)?
) Which are loop-free (without loops)?
) Which are (simple) graphs?

(a) Only (1) and (3) are connected, (2) is disconnected; its connected components are {A, D, E} and {B, C}. (4) is
disconnected; its connected components are {A, B, E} and {C, D}.

(b) Only (1) and (4) are cycle-free. (2) has the cycle (A, D, E, A), and (3) has the cycle (A,B, E, A).
(c) Only (4) has a loop which is {B, B}.

(d) Only (1) and (2) are graphs. Multigraph (3) has multiple edges {A, E} and {A, E}; and (4) has both multiple edges
{¢, D} and {C, D} and a loop {B, B}.

(n 2 4)

Let G be the graph in Fig. 8-38(a). Find:

(a) all simple paths from A to C; (d) G —V;
(b) all cycles; (e) all cutpoints;
(c) subgraph H generatedby V) ={B,C X,Y}; (f)allbridges.

(@) There are two simple paths from Ato C: (A, X,Y,C) and (A, X,B, Y,C).

(b) Thereis only one cycle: (B, X,Y,B).

(c) AspicturedinFig.8-38(b), H consists of the vertices V! and the set E of alledges whose endpoints belongto V/,
thatis, £ = [{B, X}, {X, Y} {B, Y} {C Y}].

(d) Delete vertex Y from G and all edges which contain Y to obtain the graph G — Y in Fig. 8-38(c). (Note Yis a
cutpoint since G — Yis disconnected.)

(e) Vertices A, X, and Y are cutpoints.

(f) Anedge eis a bridge if G — eis disconnected. Thus there are three bridges: {4, Z}, {A, X}, and {C, Y }.

[ o]

(a) (h) (¢)

Fig. 8-38



8.5. Consider the graph G in Fig. 8-36(b). Find the subgraphs obtained when each vertex is deleted. Does G
have any cut points?

When we delete a vertex from G, we also have to delete all edges which contain the vertex. The six graphs obtained
by deleting each of the vertices of G are shown in Fig. 8-39. All six graphs are connected; hence no vertex is a cut

point.
[ I I I vy
(4) (B) (C)
. IA . I__V
(D) (F)

(E)

Fig. 8-39

8.6. Show that the six graphs obtained in Problem 8.5 are distinct, that is, no two of them are isomorphic.
Also show that (B) and (C) are homeomorphic.

The degrees of the five vertices of any graph cannot be paired off with the degrees of any other graph, except for (B)
and (C). Hence none of the graphs is isomorphic except possibly (B) and (C).

However if we delete the vertex of degree 3 in (B) and (C), we obtain distinct subgraphs. Thus (B) and (C) are also
nonisomorphic; hence all six graphs are distinct. However, (B) and (C) are homeomorphic since they can be obtained
from isomorphic graphs by adding appropriate vertices.

TRAVERSABLE GRAPHS, EULER AND HAMILTONIAN CIRCUITS

8.7. Consider each graph in Fig. 8-40. Which of them are traversable, that is, have Euler
paths? Which are Eulerian, that is, have an Euler circuit? For those that do not, explain

why.

o

(a) (h) (¢)

Fig. 8-40

G is traversable (has an Euler path) if only 0 or 2 vertices have odd degree, and G is Eulerian
(has an Euler circuit) if all vertices are of even degree (Theorem 8.3).



(a) Traversable, since there are two odd vertices. The traversable path must begin at one of the odd vertices and
will end at the other.

(b) Traversable, since all vertices are even. Thus G has an Euler circuit.
(c) Since six vertices have odd degrees, G is not traversable.
8.8. Which of the graphs in Fig. 8-40 have a Hamiltonian circuit? If not, why not?
Graphs (a) and (c) have Hamiltonian circuits. (The reader should be able to easily find one of them.) However, graph
(b) has no Hamiltonian circuit. For if ais a Hamiltonian circuit, then a must connect the middle vertex with the lower

right vertex, then proceed along the bottom row to the lower right vertex, then vertically to the middle right, but then
is forced back to the central vertex before visiting the remaining vertices.

8.9. ProveTheorem 8.3 (Euler): Afinite connected graph G is Eulerian if and only if each vertex has even degree.

Suppose G is Eulerian and T is a closed Eulerian trail. For any vertex v of G, the trail T enters and leaves v the same
number of times without repeating any edge. Hence v has even degree.

Suppose conversely that each vertex of G has even degree. We construct an Eulerian trail. We begin a trail T; at any
edge e. Weextend T; by adding one edge after the other. If T; is not closed at any step, say, T, begins at u but ends

at v /= u, then only an odd number of the edges incident on v appear in T;; hence we can extend T, by another edge
incident on v. Thus we can continue to extend T, until T, returns to its initial vertex u, i.e., until T, is closed. If T,
includes all the edges of G, then T, is our Eulerian trail.

Suppose T, does not include all edges of G. Consider the graph H obtained by deleting all edges of T, from G. H
may not be connected, but each vertex of H has even degree since T, contains an even number of the edges incident
on any vertex. Since G is connected, there is an edge € of H which has an endpoint « in T;. We construct a trail T,
in H beginning at «' and using €. Since all vertices in H have even degree, we can continue to extend T, in H until

T, returns to u’ as pictured in Fig. 8-41. We can clearly put T, and T, together to form a larger closed trail in G. We
continue this process until all the edges of G are used. We finally obtain an Eulerian trail, and so G is Eulerian.

T, T,

Fig. 8-41

TREES, SPANNING TREES

8.10. Draw all trees with exactly six vertices.

There are six such trees which are exhibited in Fig. 8-42. The first tree has diameter 5, the next two diameter 4, the
next two diameter 3, and the last one diameter 2. Any other tree with 6 nodes is isormorphic to one of these trees.

- Rk



Fig. 8-42
8.11. Find all spanning trees of the graph G shown in Fig. 8-43(a).

There are eight such spanning trees as shown in Fig. 8-43(b). Each spanning tree must have 4 — 1 = 3 edges since G

has four vertices. Thus each tree can be obtained by deleting two of the five edges of G. This can be done in 10 ways,

{a) Graph G (b) Spanning trees

Fig. 8-43

except that two of the ways lead to disconnected graphs. Hence the above eight spanning trees are all the spanning
trees of G.

8.12. Find a minimal spanning tree T for the weighted graph G in Fig. 8-44(a).

(a) (b}

Fig. 8-44

Since G has n = 9 vertices, T must have n — 1 = 8 edges. Apply Algorithm 8.2, that is, keep deleting edges with

maximum length and without disconnecting the graph untilonlyn—1 = 8 edges remain.Alternatively, apply Algorithm
8.3, that is, beginning with the nine vertices, keep adding edges with minimum length and without forming any circle

until n — 1 = 8 edges are added. Both methods give a minimum spanning tree such as that shown in Fig. 8-44(b).
8.13. Let G be a graph with more than one vertex. Prove the following are equivalent.
(i) Gisatree.
(i) Each pair of vertices is connected by exactly one simple path.

(i) Gis connected; but G — e is disconnected for any edge e of G.
(iv) Gis cycle-free, but if any edge is added to G then the resulting graph has exactly one cycle.

(i) implies (ii) Let u and v be two vertices in G. Since G is a tree, G is connected so there is at least one path between
u and v. By Problem 8.37 there can only be one simple path between u and v, otherwise G will contain a cycle.

(ii) implies (iii) Suppose we delete an edge e = {u, v} from G. Note e is a path from u to v. Suppose the resulting



(iii)

(iv)

graph G — e has a path P from u to v. Then P and e are two distinct paths from u to v, which contradicts the
hypothesis. Thus there is no path between uand vin G — e, so G — e is disconnected.

implies (iv) Suppose G contains a cycle C which contains an edge e =,{v . By hypothesis, G is connected but G@
G ess disconnected, with u and v belonging to different components of G’ (Problem 8.41) This contradicts the
fact that u and v are connected by the path P & e-which lies in G. Hence G is cycle-free. Now let x and y be
vertices of G and let H be the graph obtained by adjoining the edge e x, y . Silice G is connected, there is a
path Pfrom xto yin G; hence C Pe forms aTycle in H. Suppose H contains another cycle C.Since G is cycle-free,
C must contain the edge e, say C Ple. Then P and™P’ are two simple paths in G from x to y. (See Fig. 8-45.) By
Problem 8.37, G contains a cycle, which contradicts the fact that G is cycle-free. Hence H contains only one cycle.

implies (i) Since adding any edge e = {x, y }o G produces a cycle, the vertices x and y must already be
connected in G. Hence G is connected and by hypothesis G is cycle-free; that is, G is a tree.

PJ

Fig. 8-45

8.14. Prove Theorem 8.6: Let G be a finite graph with n > 1 vertices. Then the following are equivalent.
(i) Gis a tree, (ii) G is a cycle-free and has n — 1 edges, (iii) G is connected and hasn — 1
edges.

The proofis byinduction onn. The theoremis certainly true for the graph with only one vertex and hence no edges.

That is, the theorem holds for n _1. We now assume that n > 1 and that the theorem holds for graphs with less than
n vertices.

@i

(ii)

implies (ii) Suppose G is a tree. Then G is cycle-free, so we only need to show that G has n — 1 edges. By Problem
8.38, G has a vertex of degree 1. Deleting this vertex and its edge, we obtain a tree T which has n — 1 vertices.
The theorem holds for T, so T has n — 2 edges. Hence G has n — 1 edges.

implies (iii) Suppose G is cycle-free and has n — 1 edges. We only need show that G is connected. Suppose G is
disconnected and has k components, T, ..., T;, which are trees since each is connected and cycle-free. Say T; has
n; vertices. Note n; < n. Hence the theorem holds for T;, so T;has n;— 1 edges.Thus

n=n;+n,+ - +n

and

n—1=(—-1Y+ M-+ -+ (—1)=n+n+ - +n—k=n—k



Hence k _ 1. But this contradicts the assumption that G is disconnected and has k > 1 components. Hence G

is connected.

(iii) implies (i) Suppose G is connected and has n — 1 edges. We only need to show that G is cycle-free. Suppose G
has a cycle containing an edge e. Deleting e we obtain the graph H = G — e which is also connected. But H has
n vertices and n —2 edges, and this contradicts Problem 8.39. Thus G is cycle-free and hence is a tree.

PLANAR GRAPHS
8.15. Draw a planar representation, if possible, of the graphs (a), (b), and (c) in Fig. 8-46.

A
A
c B P A c
D F c E D F
D
(a) (b) (o)

Fig. 8-46

(a) Redrawing the positions of B and E, we get a planar representation of the graph as in Fig. 8-47(a).

(b) This is not the star graph Ks. This has a planar representation as in Fig. 8-47(b).
(c) This graph is non-planar. The utility graph Kj 5 is a subgraph as shown in Fig. 8-47(c) where we have redrawn
the positions of Cand F.

(a)

8.16. Count the number V of vertices, the number E of edges, and the number R of regions of each map in
Fig. 8-48; and verify Euler’s formula. Also find the degree d of the outside region.

A @

(a) (b) (¢)



Fig. 8-48

() V=4E=6R=4HenceV—E+R=4—-6+4= 2 Alsod= 3.
() V=6E=9R=5;s0V—E+ R=6—9+ 5= 2. Hered = 6since two edges are counted twice. (c)
V=5E=10R=7.HenceV—E+ R=5— 10+ 7 = 2. Hered = 5.

8.17. Find the minimum number n of colors required to paint each map in Fig. 8-48.
(a)n=4;(b)n=3;(c)n= 2.

8.18. Prove Theorem 8.8 (Euler): V — E+ R = 2.
Suppose the connected map M consists of a single vertex P as in Fig. 8-49(a). Then V= 1,E = 0,and R = 1.

Hence V — E + R = 2. Otherwise M can be built up from a single vertex by the following two constructions:

(1) Addanew vertex Q, and connect it to an existing vertex Q; by an edge which does not cross any
existing edge as in Fig. 8-49(b).

(2) Connect two existing vertices Q; and Q, by an edge e which does not cross any existing edge as in Fig.
8-49(c).

Neither operation changes the value of V — E + R. Hence M has the same value of V — E + R as the map consisting
of a single vertex, thatis, V — E + R = 2. Thus the theorem is proved.

(a) ) (e)

Fig. 8-49

8.19. Prove Theorem 8.11: The following are equivalent for a graph G: (i) G is 2-colorable. (ii) G is bipartite.
(iii) Every cycle of G has even length.

(i) implies (ii). Suppose G is 2-colorable. Let M be the set of vertices painted the first color, and let N be the set of
vertices painted the second color. Then M and N form a bipartite partition of the vertices of G since neither the
vertices of M nor the vertices of N can be adjacent to each other since they are of the same color.

(i) implies (iii). Suppose G is bipartite and M and N form a bipartite partition of the vertices of G. If a cycle begins at
a vertex u of, say, M, then it will go to a vertex of N, and then to a vertex of M, and then to N and so on. Hence
when the cycle returns to u it must be of even length. That is, every cycle of G will have evenlength.

(iii) implies (i). Lastly, suppose every cycle of G has even length. We pick a vertex in each connected component and
paint it the first color, say red. We then successively paint all the vertices as follows: If a vertex is painted red,
then any vertex adjacent to it will be painted the second color, say blue. If a vertex is painted blue, then any vertex
adjacent to it will be painted red. Since every cycle has even length, no adjacent vertices will be painted the same
color. Hence G is 2-colorable, and the theorem is proved.

8.20. Prove Theorem 8.12: A planar graph G is5-colorable.

The proof is by induction on the number p of vertices of G. If p &, then the theorem obviously holds. Suppose

p >5,and thetheorem holds for graphs with less than p vertices. By the preceding problem, G has a vertex v such that
S —



8.21.

8.22,

deg(v) 5. By induction, the subgraph G v is 5-colorable. Assume one such coloring. If the vertices adjacent to v use
less than the five colors, than we simply paint v with one of the remaining colors and obtain a 5-coloring of G. We are
still left with the case that v is adjacent to five vertices which are painted different colors. Say the vertices, moving
counterclockwise about v, are v4,..., vsand are painted respectively by the colors ¢, ..., cs. (See Fig. 8-50(a).)

A H

V2

vy B G

V3

Vs

V4

(a) (b)

Fig. 8-50

Consider now the subgraph H of G generated by the vertices painted ¢, and c5. Note H includes v, and v;. If v,
and v; belong to different components of H, then we can interchange the colors ¢, and c; in the component containing

v, without destroying the coloring of G — v. Then v, and v; are painted by c;, ¢, can be chosen to paint v, and we
have a 5-coloring of G. On the other hand, suppose v, and v, are in the same component of H . Then there is a path

P from v, to v; whose vertices are painted either ¢, or c;. The path P together with the edges {v, v;} and {v, v;}form

a cycle C which encloses either v, or v,. Consider now the subgraph K generated by the vertices painted c; or c,.
Since C encloses v, or v,, but not both, the vertices v, and v, belong to different components of K. Thus we can
interchange the colors ¢, and ¢, in the component containing v, without destroying the coloring of G — v. Then v,
and v, are painted by c¢,, and we can choose c, to paint v and obtain a 5-coloring of G. Thus G is 5-colorable and the
theorem is proved.

Use the Welch-Powell Algorithm 8.4 (Fig. 8-24) to paint the graph in Fig.8-50(b).

First order the vertices according to decreasing degrees to obtain the sequence

Proceeding sequentially, we use the first color to paint the vertices H, B, and then G. (We cannot paint A, D, or
F the first color since each is connected to H , and we cannot paint C or E the first color since each is connected to
either H or B.) Proceeding sequentially with the unpainted vertices, we use the second color to paint the vertices A
and D. The remaining vertices F, C, and E can be painted with the third color. Thus the chromatic number n cannot
be greater than 3. However, in any coloring, H, D, and E must be painted different colors since they are connected
to each other. Hence n = 3.

Let G be a finite connected planar graph with at least three vertices. Show that G has at least one
vertex of degree 5 or less.

Let p be the number of vertices and g the number of edges of G, and suppose deg(u) = 6 for each vertex u of G.
But 2q equals the sum of the degrees of the vertices of G (Theorem 8.1); so 2q = 6p. Therefore

g=3p>3p—6



This contradicts Theorem 8.9. Thus some vertex of G has degree 5 or less.

9.1 ROOTED TREES

Recall that a tree graph is a connected cycle-free graph, that is, a connected graph without any
cycles.Arooted tree Tis a tree graph with a designated vertex r called the root of the tree. Since there
is a unique simple path from the root r to any other vertex vin T, this determines a direction to the
edges of T. Thus T may be viewed as a directed graph. We note that any tree may be made into a
rooted tree by simply selecting one of the vertices as the root.

Considerarooted tree T with rootr. The length of the path from the root r to any vertex v is called
the level (or depth) of v, and the maximum vertex level is called the depth of the tree. Those vertices
with degree 1, other than the root r, are called the leaves of T, and a directed path from a vertex to
a leaf is called a branch.

One usually draws a picture of a rooted tree T with the root at the top of the tree. Figure 9-2(a)
shows a rooted tree T with root r and 10 other vertices. The tree has five leaves, d,f, h, i, andj .
ObserveThat: level(aF1, level(f ) 2, level(j) 3. Furthermore, the depth of the tree is 3.

The fact that a rooted tree T gives a direction to the edges means that we can give a precedence
relationship between the vertices. Specifically, we will say that a vertex u precedes a vertex v or that

v follows u if there is
/ \ / \

/\ /\
VAN /N
VANRVAN

(e) (h

Fig. 9-2

a (directed) path from v to u. In particular, we say that v immediately follows u if (u, v) is an edge,
that is, if v follows u and v is adjacent to u. We note that every vertex v, other than the root,
immediately follows a unique vertex, but that v can be immediately followed by more than one
vertex. For example, in Fig. 9-2(a), the vertex jfollows c but immediately follows g. Also, both i and j
immediately follow g.

Arooted tree T is also a useful device to enumerate all the logical possibilities of a sequence of
events where each event can occur in a finite number of ways. This is illustrated in the following
example.



EXAMPLE 9.5 Suppose Marc and Erik are playing a tennis tournament such that the first person to
win two games in a row or who wins a total of three games wins the tournament. Find the number of
ways the tournament can proceed.

The rooted tree in Fig. 9-2(b) shows the various ways that the tournament could proceed. There
are 10 leaves which correspond to the 10 ways that the tournament can occur:

MM, MEMM, MEMEM, MEMEE, MEE, EMM, EMEMM, EMEME, EMEE, EE

Specifically, the path from the root to the leaf describes who won which games in the particular
tournament.

Ordered Rooted Trees

Consider a rooted tree T in which the edges leaving each vertex are ordered. Then we have the
concept of an ordered rooted tree. One can systematically label (or address) the vertices of such a
tree as follows: We first assign 0 to the root r. We next assign 1, 2, 3,... to the vertices immediately
following r according as the edges were ordered. We then label the remaining vertices in the
following way. If a is the label of a vertex v, then a.1, a.2,... are assigned to the vertices immediately
following v according as the edges were ordered. We illustrate this address system in Fig. 9-3(a),
where edges are pictured from left to right according to their order. Observe that the number of
decimal points in any label is one less than the level of the vertex. We will refer to this labeling system
as the universal address system for an ordered rooted tree.

The universal address system gives us an important way of linearly describing (or storing) an
ordered rooted tree. Specifically, given addresses a and#, we leta < b if b a.c, (that is, a is an initial
segment of b), or if there exist positive integers m and n with m < n such that

ag=rm.s and b=r.n.t

This order is called the lexicographic order since it is similar to the way words are arranged in a
dictionary. For example, the addresses in Fig. 9-3(a) are linearly ordered as pictured in Fig. 9-3(b).
This lexicographic order is
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Fig. 9-3

identical to the order obtained by moving down the leftmost branch of the tree, then the next branch
to the right, then the second branch to the right, and so on.
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