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Sets ,Relations and Functions 

1.1 SETS AND ELEMENTS, SUBSETS 

A set may be viewed as any well-defined collection of objects, called the elements or members of the set. 

One usually uses capital letters, A, B, X, Y , . . . ,  to denote sets, and lowercase letters, a, b, x, y , . .  ., to denote 

elements of sets. Synonyms for “set” are “class,” “collection,” and “family.” 

Membership in a set is denoted as follows: 

a ∈ S denotes that a belongs to a set S 

a, b ∈ S denotes that a and b belong to a set S 

Here ∈ is the symbol meaning “is an element of.” We use /∈ to mean “is not an element of.” 

Specifying Sets 

There are essentially two ways to specify a particular set. One way, if possible, is to list its members separated 

by commas and contained in braces { }. A second way is to state those properties which characterized the elements 

in the set. Examples illustrating these two ways are: 

A = {1, 3, 5, 7, 9} and B = {x | x is an even integer, x > 0} 

That is, A consists of the numbers 1, 3, 5, 7, 9. The second set, which reads: 

B is the set of x such that x is an even integer and x is greater than 0, 

denotes the set B whose elements are the positive integers. Note that a letter, usually x, is used to denote a typical 

member of the set; and the vertical line | is read as “such that” and the comma as “and.” 

 
 

EXAMPLE 1.1 

(a) The set A above can also be written as A = {x | x is an odd positive integer, x < 10}. 

(b) We cannot list all the elements of the above set B although frequently we specify the set by 

B = {2, 4, 6,.. .} 

where we assume that everyone knows what we mean. Observe that 8 ∈ B, but 3 ∈/ B . 

(c) Let E = {x | x2 − 3x + 2 = 0}, F = {2, 1} and G = {1, 2, 2, 1}. Then E = F = G. 

We emphasize that a set does not depend on the way in which its elements are displayed. A set remains the 

same if its elements are repeated or rearranged. 

Even if we can list the elements of a set, it may not be practical to do so. That is, we describe a set by listing its 

elements only if the set contains a few elements; otherwise we describe a set by the property which characterizes 

its elements. 

 
Subsets 

Suppose every element in a set A is also an element of a set B, that is, suppose a A implies a B. Then 

A is called a subset of B. We also say that A is contained in B  or that B  contains A. This relationship is written 

A ⊆ B or B ⊇ A 

Two sets are equal if they both have the same elements or, equivalently, if each is contained in the other. That is: 
 

If A is not a subset of B, that is, if at least one element of A does not belong to B, we write A /⊆ B. 

A = B if and only if A ⊆ B and B ⊆ A 



| 

= 

∅ 

 
EXAMPLE 1.2 Consider the sets: 

A = {1, 3, 4, 7, 8, 9}, B = {1, 2, 3, 4, 5}, C = {1, 3}. 

Then C ⊆ A and C ⊆ B since 1 and 3, the elements of C, are also members of A and B. But B /⊆ A since some 

of the elements of B, e.g., 2 and 5, do not belong to A. Similarly, A /⊆ B. 

Property 1: It is common practice in mathematics to put a vertical line “ ” or slanted line “/” through a symbol 

to indicate the opposite or negative meaning of a symbol. 

Property 2: The statement A ⊆ B does not exclude the possibility that A = B. In fact, for every set A we have 

A ⊆ A since, trivially, every element in A belongs to A. However, if A ⊆ B and A /= B, then we say A is a 

proper subset of B (sometimes written A ⊂ B). 

Property 3: Suppose every element of a set A belongs to a set B and every element of B belongs to a set C. 

Then clearly every element of A also belongs to C. In other words, if A ⊆ B and B ⊆ C, then A ⊆ C. 

The above remarks yield the following theorem. 

Theorem 1.1: Let A, B, C be any sets. Then: 

(i) A ⊆ A 

(ii) If A ⊆ B and B ⊆ A, then A = B 

(iii) If A ⊆ B and B ⊆ C, then A ⊆ C 

Special symbols 

Some sets will occur very often in the text, and so we use special symbols for them. Some such symbols are: 

N = the set of natural numbers or positive integers: 1, 2, 3,...  

Z = the set of all integers: ..., −2, −1, 0, 1, 2,...  

Q = the set of rational numbers 

R = the set of real numbers 

C = the set of complex numbers 

Observe that N ⊆ Z ⊆ Q ⊆ R ⊆ C. 

Universal Set, Empty Set 

All sets under investigation in any application of set theory are assumed to belong to some fixed large set 

called the universal set which we denote by 

U 

unless otherwise stated or implied. 

Given a universal set U and a property P, there may not be any elements of U which have property P. For 

example, the following set has no elements: 

S = {x | x is a positive integer, x2 = 3} 

Such a set with no elements is called the empty set or null set and is denoted by 

∅ 

There is only one empty set. That is, if S and T are both empty, then S T , since they have exactly the same 

elements, namely, none. 

The empty set is also regarded as a subset of every other set. Thus we have the following simple result 

which we state formally. 

Theorem 1.2: For any set A, we have ∅⊆ A ⊆ U. 

 
Disjoint Sets 
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Two sets A and B are said to be disjoint if they have no elements in common. For example, suppose 

 

A = {1, 2}, B = {4, 5, 6}, and   C = {5, 6, 7, 8} 

Then A and B are disjoint, and A and C are disjoint. But B and C are not disjoint since B and C have elements in 

common, e.g., 5 and 6. We note that if A and B are disjoint, then neither is a subset of the other (unless one is the 

empty set). 

 
 

 
1.2 VENN DIAGRAMS 

A Venn diagram is a pictorial representation of sets in which sets are represented by enclosed areas in the 

plane. The universal set U is represented by the interior of a rectangle, and the other sets are represented by disks 

lying within the rectangle. If A  B, then the disk representing A will be entirely within the disk representing B as 

in Fig. 1-1(a). If A and B are disjoint, then the disk representing A will be separated from the disk representing B 

as in Fig. 1-1(b). 

 

 

 

 

Fig. 1-1 

 
 

1.3 SET OPERATIONS 

This section introduces a number of set operations, including the basic operations of union, intersection, and 

complement. 

 
Union and Intersection 

The union of two sets A and B, denoted by A B, is the set of all elements which belong to A or to B; 

that is, 

A ∪ B = {x | x ∈ A or x ∈ B} 

Here “or” is used in the sense of and/or. Figure 1-3(a) is a Venn diagram in which A B is shaded. 

The intersection of two sets A and B, denoted by A B, is the set of elements which belong to both A and 

B; that is, 

A ∩ B = {x | x ∈ A and x ∈ B} 

Figure 1-3(b) is a Venn diagram in which A ∩ B is shaded. 



  
 

  
 

Fig. 1-3 

 

Recall that sets A and B are said to be disjoint or nonintersecting if they have no elements in common or, using 

the definition of intersection, if A ∩ B = ∅, the empty set. Suppose 

S = A ∪ B and A ∩ B =∅  

Then S is called the disjoint union of A and B. 

 

 
EXAMPLE 1.4 

(a) Let A = {1, 2, 3, 4}, B = {3, 4, 5, 6, 7}, C = {2, 3, 8, 9}. Then 

A ∪ B = {1, 2, 3, 4, 5, 6, 7}, A ∪ C = {1, 2, 3, 4, 8, 9}, B ∪ C = {2, 3, 4, 5, 6, 7, 8, 9}, 

A ∩ B = {3, 4}, A ∩ C = {2, 3}, B ∩ C = {3}. 

(b) Let U be the set of students at a university, and let M denote the set of male students and let F denote the set 

of female students. The U is the disjoint union of M of F ; that is, 

U = M ∪ F and M ∩ F =∅  

This comes from the fact that every student in U is either in M or in F , and clearly no student belongs to both M 

and F , that is, M and F are disjoint. 

The following properties of union and intersection should be noted. 

Property 1: Every element x in A ∩ B belongs to both A and B; hence x belongs to A and x belongs to B. Thus 

A ∩ B is a subset of A and of B; namely 

A ∩ B ⊆ A   and A ∩ B ⊆ B 

Property 2: An element x belongs to the union A ∪ B if x belongs to A or x belongs to B; hence every element 

in A belongs to A ∪ B, and every element in B belongs to A ∪ B. That is, 

A ⊆ A ∪ B and B ⊆ A ∪ B 

We state the above results formally: 

Theorem 1.3: For any sets A and B, we have: 

(i) A ∩ B ⊆ A ⊆ A ∪ B and (ii) A ∩ B ⊆ B ⊆ A ∪ B. 

The operation of set inclusion is closely related to the operations of union and intersection, as shown by the 

following theorem. 

Theorem 1.4: The following are equivalent: A ⊆ B, A ∩ B = A, A ∪ B = B. 

This theorem is proved in Problem 1.8. Other equivalent conditions to are given in Problem 1.31. 
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Fig. 1-4 

 
 

Complements, Differences, Symmetric Differences 

Recall that all sets under consideration at a particular time are subsets of a fixed universal set U. The absolute 

complement or, simply, complement of a set A, denoted by AC, is the set of elements which belong to U but which do 

not belong to A. That is, 

AC = {x | x ∈ U, x ∈/ A} 

Some texts denote the complement of A by AJ or Ā. Fig. 1-4(a) is a Venn diagram in which AC is shaded. 

The relative complement of a set B with respect to a set A or, simply, the difference of A and B, denoted by 

A\B, is the set of elements which belong to A but which do not belong to B; that is 

A\B = {x | x ∈ A, x ∈/ B} 

The set A\B is read “A minus B.” Many texts denote A\B by A − B or A ∼ B. Fig. 1-4(b) is a Venn diagram in 

which A\B is shaded. 

The symmetric difference of sets A and B, denoted by A B, consists of those elements which belong to A 

or B but not to both. That is, 

A ⊕ B = (A ∪ B)\(A ∩ B)   or A ⊕ B = (A\B) ∪ (B\A) 

Figure 1-4(c) is a Venn diagram in which A ⊕ B is shaded. 

 
EXAMPLE 1.5 Suppose U = N = {1, 2, 3,.. .} is the universal set. Let 

A = {1, 2, 3, 4}, B = {3, 4, 5, 6, 7}, C = {2, 3, 8, 9}, E = {2, 4, 6,.. .} 

(Here E is the set of even integers.) Then: 

AC = {5, 6, 7,.. .}, BC = {1, 2, 8, 9, 10,.. .}, EC = {1, 3, 5, 7,.. .} 

That is, EC is the set of odd positive integers. Also: 

A\B = {1, 2}, A\C = {1, 4}, B\C = {4, 5, 6, 7}, A\E = {1, 3}, 

B\A = {5, 6, 7}, C\A = {8, 9}, C\B = {2, 8, 9}, E\A = {6, 8, 10, 12,..  .}. 

Furthermore: 

A ⊕ B = (A\B) ∪ (B\A) = {1, 2, 5, 6, 7}, B ⊕ C = {2, 4, 5, 6, 7, 8, 9}, 

A ⊕ C = (A\C) ∪ (B\C) = {1, 4, 8, 9}, A ⊕ E = {1, 3, 6, 8, 10, . .  .}. 

Fundamental Products 

Consider n distinct sets A1, A2, …, An.A fundamental product of the sets is a set of the form 

A∗
1  ∩ A∗

2  ∩ . . . ∩ A∗
n where    A∗

i   = A    or A∗
i   = AC 
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We note that: 

(i) There are m 2n such fundamental products. 
(ii) Any two such fundamental products are disjoint. 

(iii) The universal set U is the union of all fundamental products. 
 

Thus U is the disjoint union of the fundamental products (Problem 1.60). There is a geometrical description of 

these sets which is illustrated below. 

 

 
EXAMPLE 1.6  Figure 1-5(a) is the Venn  diagram of three sets A, B, C.  The following lists the m 23 8 

fundamental products of the sets A, B, C: 
 

P1 = A ∩ B ∩ C, P3 = A ∩ BC ∩ C, P5 = AC ∩ B ∩ C, P7 = AC ∩ BC ∩ C, 

P2 = A ∩ B ∩ CC,   P4 = A ∩ BC ∩ CC, P6 = AC ∩ B ∩ CC, P8 = AC ∩ BC ∩ CC. 

The eight products correspond precisely to the eight disjoint regions in the Venn diagram of sets A, B, C as 

indicated by the labeling of the regions in Fig. 1-5(b). 

 
 

 

Fig. 1-5 

  

 
1.4 ALGEBRA OF SETS, DUALITY 

Sets under the operations of union, intersection, and complement satisfy various laws (identities) which are listed 

in Table 1-1. In fact, we formally state this as: 

Theorem 1.5: Sets satisfy the laws in Table 1-1. 

 

 
Table 1-1 Laws of the algebra of sets 

Idempotent laws: (1a) A ∪ A = A (1b) A ∩ A = A 

Associative laws: (2a) (A ∪ B) ∪ C = A ∪ (B ∪ C) (2b) (A ∩ B) ∩ C = A ∩ (B ∩ C) 

Commutative laws: (3a) A ∪ B = B ∪ A (3b) A ∩ B = B ∩ A 

Distributive laws: (4a) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (4b) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) 

Identity laws: 
(5a) A ∪∅ = A (5b) A ∩ U = A 

(6a) A ∪ U = U (6b) A ∩ ∅ =∅   

Involution laws: (7) (AC)C = A 

 

Complement laws: 
(8a) A ∪ AC = U (8b) A ∩ AC =∅  

(9a) UC =∅  (9b) ∅C = U 

DeMorgan’s laws: (10a) (A ∪ B)C = AC ∩ BC (10b) (A ∩ B)C = AC ∪ BC 
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Remark: Each law in Table 1-1 follows from an equivalent logical law. Consider, for example, the proof of 

DeMorgan’s Law 10(a): 

(A ∪ B)C = {x | x ∈/ (A or B)} = {x | x ∈/ A and x ∈/ B} = AC ∩ BC Here we use the 

equivalent (DeMorgan’s) logical law: 

¬(p ∨ q) = ¬p ∧ ¬q 

where means “not,” means “or,” and means “and.” (Sometimes Venn diagrams are used to illustrate the 

laws in Table 1-1 as in Problem 1.17.) 

 
Duality 

The identities in Table 1-1 are arranged in pairs, as, for example, (2a) and (2b). We now consider the principle behind 

this arrangement. Suppose E is an equation of set algebra. The dual E∗ of E is the equation obtained by replacing 

each occurrence of ∪, ∩, U and ∅ in E by ∩, ∪, ∅, and U, respectively. For example, the dual of 

(U ∩ A) ∪ (B ∩ A) = A is (∅∪ A) ∩ (B ∪ A) = A 

Observe that the pairs of laws in Table 1-1 are duals of each other. It is a fact of set algebra, called the principle 

of duality, that if any equation E is an identity then its dual E∗ is also an identity. 

 
1.5 FINITE SETS, COUNTING PRINCIPLE 

Sets can be finite or infinite. A set S is said to be finite if S is empty or if S contains exactly m elements where 

m is a positive integer; otherwise S is infinite. 

 
EXAMPLE 1.7 

(a) The set A of the letters of the English alphabet and the set D of the days of the week are finite sets. Specifically, 

A has 26 elements and D has 7 elements. 

(b) Let E be the set of even positive integers, and let I be the unit interval, that is, 

E = {2, 4, 6 , . .  .}   and I = [0, 1]= {x | 0 ≤ x ≤ 1} 

Then both E and I are infinite. 

A set S is countable if S is finite or if the elements of S can be arranged as a sequence, in which case S is said to 
be countably infinite; otherwise S is said to be uncountable. The above set E of even integers is countably infinite, 

whereas one can prove that the unit interval I = [0, 1] is uncountable. 

Counting Elements in Finite Sets 

The notation n(S) or S will denote the number of elements in a set S. (Some texts use #(S) or card(S) instead of 

n(S).) Thus n(A)  26, where A is the letters in the English alphabet, and n(D)   7, where D is the   days of the week. 

Also n( ) 0 since the empty set has no elements. 

The following lemma applies. 

Lemma 1.6: Suppose A and B are finite disjoint sets. Then A ∪ B is finite and 

n(A ∪ B) = n(A) + n(B) 

This lemma may be restated as follows: 

Lemma 1.6: Suppose S is the disjoint union of finite sets A and B. Then S is finite and 

n(S) = n(A) + n(B) 
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Proof. In counting the elements of A B, first count those that are in A. There are n(A) of these. The only other 

elements of A B are those that are in B but not in A. But since A and B are disjoint, no element of B is in A, so 

there are n(B) elements that are in B but not in A. Therefore, n(A B) n(A) n(B). 

For any sets A and B, the set A is the disjoint union of A B and A B. Thus Lemma 1.6 gives us the following useful 

result. 

Corollary 1.7: Let A and B be finite sets. Then 

n(A\B) = n(A) − n(A ∩ B) 

For example, suppose an art class A has 25 students and 10 of them are taking a biology class B. Then the number 

of students in class A which are not in class B is: 

n(A\B) = n(A) − n(A ∩ B) = 25 − 10 = 15 

Given any set A, recall that the universal set U is the disjoint union of A and AC. Accordingly, Lemma 1.6 also 

gives the following result. 

Corollary 1.8: Let A be a subset of a finite universal set U. Then 

n(AC) = n(U) − n(A) 

For example, suppose a class U with 30 students has 18 full-time students. Then there are 30 18 12 part-time 

students in the class U. 

 
Inclusion–Exclusion Principle 

There is a formula for n(A B) even when they are not disjoint, called the Inclusion–Exclusion Principle. 

Namely: 

Theorem (Inclusion–Exclusion Principle) 1.9: Suppose A and B are finite sets. Then A B and A B are 

finite and 

n(A ∪ B) = n(A) + n(B) − n(A ∩ B) 

That is, we find the number of elements in A or B (or both) by first adding n(A) and n(B) (inclusion) and then 

subtracting n(A B) (exclusion) since its elements were counted twice. 

We can apply this result to obtain a similar formula for three sets: 

Corollary 1.10: Suppose A, B, C are finite sets. Then A ∪ B ∪ C is finite and 

n(A ∪ B ∪ C) = n(A) + n(B) + n(C) − n(A ∩ B) − n(A ∩ C) − n(B ∩ C) + n(A ∩ B ∩ C) 

Mathematical induction (Section 1.8) may be used to further generalize this result to any number of finite sets. 

 

 
EXAMPLE 1.8  Suppose a list A contains the 30 students in a mathematics class, and a list B  contains the   35 

students in an English class, and suppose there are 20 names on both lists. Find the number of students: 

(a) only on list A, (b) only on list B, (c) on list A or B (or both), (d) on exactly one list. 

(a) List A has 30 names and 20 are on list B; hence 30 − 20 = 10 names are only on list A. 

(b) Similarly, 35 − 20 = 15 are only on list B. 

(c) We seek n(A ∪ B). By inclusion–exclusion, 

n(A ∪ B) = n(A) + n(B) − n(A ∩ B) = 30 + 35 − 20 = 45. 

In other words, we combine the two lists and then cross out the 20 names which appear twice. 

(d) By (a) and (b), 10 + 15 = 25 names are only on one list; that is, n(A ⊕ B) = 25. 

However, if A and B are two arbitrary sets, it is possible that some objects are in A but not in B, some are in 

B but not in A, some are in both A and B, and some are in neither A nor B; hence in general we represent A and 

B as in Fig. 1-1(c). 
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Power Sets 

For a given set S , we may speak of the class of all subsets of S. This class is called the power set of S , and 

will be denoted by P (S). If S is finite, then so is P (S). In fact, the number of elements in P (S) is 2 raised to the 

power n(S). That is, 

n(P(S)) = 2n(S) 

(For this reason, the power set of S is sometimes denoted by 2S .) 

 

 

EXAMPLE 1.10 Suppose S = {1, 2, 3}. Then 

P (S) = [∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, S] 

Note that the empty set ∅ belongs to P (S) since ∅ is a subset of S. Similarly, S belongs to P (S). As expected 

from the above remark, P (S) has 23 = 8 elements. 

1.6 MATHEMATICAL INDUCTION 

An essential property of the set N = {1, 2, 3, …} of positive integers follows: 

Principle of Mathematical Induction I: Let P be a proposition defined on the positive integers N; that is, P (n) 

is either true or false for each n N. Suppose P has the following two properties: 

(i) P (1) is true. 

(ii) P (k + 1) is true whenever P (k) is true. 

Then P is true for every positive integer n ∈ N. 

We shall not prove this principle. In fact, this principle is usually given as one of the axioms when N is 

developed axiomatically. 

 

 
EXAMPLE 1.13 Let P be the proposition that the sum of the first n odd numbers is n2; that is, 

P (n) : 1 + 3 + 5 + ··· + (2n − 1) = n2 

(The kth odd number is 2k − 1, and the next odd number is 2k + 1.) Observe that P (n) is true for n = 1; namely, 

P (1) = 12 

Assuming P (k) is true, we add 2k + 1 to both sides of P (k), obtaining 

1 + 3 + 5 + ··· + (2k − 1) + (2k + 1) − k2 + (2k + 1) = (k + 1)2 

which is P (k 1). In other words,  P (k 1) is true whenever P (k) is true. By the principle of mathematical 

induction, P is true for all n. 

There is a form of the principle of mathematical induction which is sometimes more convenient to use. 

Although it appears different, it is really equivalent to the above principle of induction. 

Principle of Mathematical Induction II: Let P be a proposition defined on the positive integers N such that: 

(i) P (1) is true. 

(ii) P (k) is true whenever P (j) is true for all 1 ≤ j < k. 

Then P is true for every positive integer n ∈ N. 

Remark: Sometimes one wants to prove that a proposition P is true for the set of integers 

{a, a + 1,a + 2,a + 3,.. .} 

where a is any integer, possibly zero. This can be done by simply replacing 1 by a in either of the above Principles 

of Mathematical Induction. 
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Relations 
2.1 PRODUCT SETS 

Consider two arbitrary sets A and B. The set of all ordered pairs (a, b) where a   A and b    B  is called    the 

product, or Cartesian product, of A and B. A short designation of this product is A     B, which is read      “A cross 

B.” By definition, 
 

A × B = {(a, b) | a ∈ A and b ∈ B} 

One frequently writes A2 instead of A × A. 

 
EXAMPLE 2.1  R denotes the set of real numbers and so R2  R  R is the set of ordered pairs of real numbers. 

The reader is familiar with the geometrical representation of R2 as points in the plane as in Fig. 2-1. Here each 
point P represents an ordered pair (a, b) of real numbers and vice versa; the vertical line through P meets the x-

axis at a, and the horizontal line through P meets the y-axis at b. R2 is frequently called the Cartesian plane. 

 

EXAMPLE 2.2 Let A = {1, 2} and B = {a, b, c}. Then 

A × B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)} 

B × A = {(a, 1), (b, 1), (c, 1), (a, 2), (b, 2), (c, 2)} 

Also, A × A = {(1, 1), (1, 2), (2, 1), (2, 2)}  
 

Fig. 2-1 

 

 
 

There are two things worth noting in the above examples. First of all A B  B  A. The Cartesian product deals with 

ordered pairs, so naturally the order in which the sets are considered is important. Secondly, using n(S) for the 

number of elements in a set S, we have: 

 

n(A × B) = 6 = 2(3) = n(A)n(B) 

In fact, n(A × B) = n(A)n(B) for any finite sets A and B. This follows from the observation that, for an ordered 

pair (a, b) in A × B, there are n(A) possibilities for a, and for each of these there are n(B) possibilities for b. 

The idea of a product of sets can be extended to any finite number of sets. For any sets A1, A 2 , . . . ,  An, the set of 

all ordered n-tuples (a1, a2 , . . . ,  an) where a1 A1, a2  A 2 , . . . ,  an  An is called the product of the sets A 1 , . . . ,  An and 

is denoted by 

A1 × A2 × · · ·  × An or 

n 

A1 

i=1 
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Just as we write A2 instead of A × A, so we write An instead of A × A × ··· × A, where there are n factors all 

equal to A. For example, R3 = R × R × R denotes the usual three-dimensional spac 

Definition 2.1: Let A and B be sets. A binary relation or, simply, relation from A to B is a subset of A × B. 

Suppose R is a relation from A to B. Then R is a set of ordered pairs where each first element comes from 

A and each second element comes from B. That is, for each pair a A and b B, exactly one of the following 

is true: 

 

(i) (a, b) ∈ R; we then say “a is R-related to b”, written aRb. 

(ii) (a, b) ∈/ R; we then say “a is not R-related to b”, written a/Rb. 

If R is a relation from a set A to itself, that is, if R is a subset of A2 = A × A, then we say that R is a relation on A. 

The domain of a relation R is the set of all first elements of the ordered pairs which belong to R, and the 

range is the set of second elements. 

EXAMPLE 2.3 

 

(a) A = (1, 2, 3) and B = {x, y, z}, and let R = {(1, y), (1, z), (3, y)}. Then R is a relation from A to B since R 

is a subset of A × B. With respect to this relation, 

1Ry, 1Rz, 3Ry, but    1/Rx, 2/Rx, 2/Ry, 2/Rz, 3/Rx, 3/Rz 

The domain of R is {1, 3} and the range is {y, z}. 

(b) Set inclusion ⊆ is a relation on any collection of sets. For, given any pair of set A and B, either A ⊆ B 

or A /⊆ B. 

(c) A familiar relation on the set Z of integers is “m divides n.” A common notation for this relation is to write 

m|n when m divides n. Thus 6 | 30 but 7 | 25. 

(d) Consider the set L of lines in the plane. Perpendicularity, written “⊥,” is a relation on L. That is, given any 

pair of lines a and b, either a ⊥ b or a /⊥ b. Similarly, “is parallel to,” written “||,” is a relation on L since 

either a ǁ b or a /ǁ b. 

(e) Let A be any set. An important relation on A is that of equality, 

{(a, a) | a ∈ A} 

which is usually denoted by “ .” This relation is also called the identity or diagonal relation on A and it will also 

be denoted by OA or simply O. 

 

(f) Let A be any set. Then A A and are subsets of A A and hence are relations on A called the universal relation 

and empty relation, respectively. 

 

Inverse Relation 

Let R be any relation from a set A to a set B. The inverse of R, denoted by R−1, is the relation from B to A 

which consists of those ordered pairs which, when reversed, belong to R; that is, 

R−1 = {(b, a) | (a, b) ∈ R} 

For example, let A = {1, 2, 3} and B = {x, y, z}. Then the inverse of 

R = {(1, y), (1, z), (3, y)} is R−1 = {(y, 1), (z, 1), (y, 3)} 

Clearly, if R is any relation, then (R−1)−1    R. Also, the domain and range of R−1 are equal, respectively, to  the 

range and domain of R. Moreover, if R is a relation on A, then R−1 is also a relation on A. 
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2.2 PICTORIAL REPRESENTATIVES OF RELATIONS 

There are various ways of picturing relations. 

Relations on R 

Let S be a relation on the set R of real numbers; that is, S is a subset of R2   R    R. Frequently, S consists of all 

ordered pairs of real numbers which satisfy some given equation E(x, y) 0 (such as x2 y2 25). 

Since R2 can be represented by the set of points in the plane, we can picture S by emphasizing those points in the 

plane which belong to S. The pictorial representation of the relation is sometimes called the graph of the relation. 

For example, the graph of the relation x2 y2 25 is a circle having its center at the origin and radius 5. See Fig. 2-

2(a). 

 
 

Fig. 2-2 

 
 

Directed Graphs of Relations on Sets 

There is an important way of picturing a relation R on a finite set. First we write down the elements of the set, and 
then we draw an arrow from each element x to each element y whenever x is related to y. This diagram is called 
the directed graph of the relation. Figure 2-2(b), for example, shows the directed graph of the following relation R 

on the set A = {1, 2, 3, 4}: 

R = {(1, 2), (2, 2), (2, 4), (3, 2), (3, 4), (4, 1), (4, 3)} 

Observe that there is an arrow from 2 to itself, since 2 is related to 2 under R. 

These directed graphs will be studied in detail as a separate subject in Chapter 8. We mention it here mainly for 

completeness. 

 
 

Pictures of Relations on Finite Sets 

Suppose A and B are finite sets. There are two ways of picturing a relation R from A to B. 

 
(i) Form a rectangular array (matrix) whose rows are labeled by the elements of A and whose columns are 

labeled by the elements of B. Put a 1 or 0 in each position of the array according as a ∈ A is or is not 

related to b ∈ B. This array is called the matrix of the relation. 

(ii) Write down the elements of A and the elements of B in two disjoint disks, and then draw an arrow from 

a ∈ A to b ∈ B whenever a is related to b. This picture will be called the arrow diagram of the relation. 

Figure 2-3 pictures the relation R in Example 2.3(a) by the above two ways. 
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Fig. 2-3 

2.3 COMPOSITION OF RELATIONS 

Let A, B and C be sets, and let R be a relation from A to B and let S be a relation from B to C. That is, R is a subset 

of A   B  and S is a subset of B   C. Then R and S give rise to a relation from A to C denoted by R  S and defined 

by: 

 

That is ,a(R◦S)c if for some b ∈ B we have aRb and bSc. 

R ◦ S = {(a, c) | there exists b ∈ B for which (a, b) ∈ R and (b, c) ∈ S} 

The relation R S is called the composition of R and S; it is sometimes denoted simply by RS. 

Suppose R is a relation on a set A, that is, R is a relation from a set A to itself. Then R R, the composition of R 

with itself, is always defined. Also, R  R  is sometimes denoted by R2. Similarly, R3   R2 R    R  R  R,  and so on. 

Thus Rn is defined for all positive n. 

EXAMPLE 2.4  Let A = {1, 2, 3, 4}, B = {a, b, c, d}, C = {x, y, z} and let 

R = {(1, a), (2, d), (3, a), (3, b), (3,d)}  and S = {(b, x), (b, z), (c, y), (d, z)} 

Consider the arrow diagrams of R and S as in Fig. 2-4. Observe that there is an arrow from 2 to d which is followed 

by an arrow from d to z. We can view these two arrows as a “path” which “connects” the element 2 ∈ A to the 

element z ∈ C. Thus: 

2(R ◦ S)z since  2Rd and dSz 

Similarly there is a path from 3 to x and a path from 3 to z. Hence 

3(R◦S)x and 3(R◦S)z 

No other element of A is connected to an element of C. Accordingly, 

R ◦ S = {(2, z), (3, x), (3, z)} 

Our first theorem tells us that composition of relations is associative. 

Theorem 2.1: Let A, B, C and D be sets. Suppose R is a relation from A to B, S is a relation from B to C, and 

T is a relation from C to D. Then 

(R ◦ S) ◦ T = R ◦ (S ◦ T). 

 
 

 

Fig. 2-4 
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Composition of Relations and Matrices 

There is another way of finding R S. Let MR and MS denote respectively the matrix representations of the relations 

R and S. Then 

 
MR = 

 
1 

3   
⎢
⎣

 

 

⎤

⎥
⎦

  
a 

and     MS        b c 

d 

x y z 

0 

1 

0 

0 

⎤

⎥
⎦

 

Multiplying MR and MS we obtain the matrix 

 

 

M = MRMS = 

 

 
1 

3   
⎢
⎣

 

 

⎤

⎥
⎦

 

The nonzero entries in this matrix tell us which elements are related by R  S. Thus M MRMS and MR S have 

the same nonzero entries. 

 
2.4 TYPES OF RELATIONS 

This section discusses a number of important types of relations defined on a set A. 

 
Reflexive Relations 

A relation R on a set A is reflexive if aRa for every a ∈ A, that is, if (a, a) ∈ R for every a ∈ A. Thus R is not 

reflexive if there exists a ∈ A such that (a, a) ∈/ R. 

 
EXAMPLE 2.5 Consider the following five relations on the set A = {1, 2, 3, 4}: 

R1 = {(1, 1), (1, 2), (2, 3), (1, 3), (4, 4)} 
R2 = {(1, 1)(1, 2), (2, 1), (2, 2), (3, 3), (4, 4)} 
R3 = {(1, 3), (2, 1)} 
R4 = ∅, the empty relation 

R5 = A × A, the universal relation 

Determine which of the relations are reflexive. 

Since A contains the four elements 1, 2, 3, and 4, a relation R on A is reflexive if it contains the four pairs (1, 1), 

(2, 2), (3, 3), and (4, 4). Thus only R2  and the universal relation R5     A     A are reflexive. Note that    R1, R3, and 

R4 are not reflexive since, for example, (2, 2) does not belong to any of them. 

 

 
EXAMPLE 2.6 Consider the following five relations: 

(1) Relation ≤ (less than or equal) on the set Z of integers. 

(2) Set inclusion ⊆ on a collection C of sets. 

(3) Relation ⊥ (perpendicular) on the set L of lines in the plane. 

(4) Relation ǁ (parallel) on the set L of lines in the plane. 

(5) Relation| of divisibility on the set N of positive integers. (Recall x | y if there exists z such that xz = y.) 

Determine which of the relations are reflexive. 

4 

4 

⎡

⎢

 

⎢
⎣

 

0 0 

0 1 

1 0 

0 1 

 

a b c d 
1 0 0 0 

0 0 0 1 

1 1 0 1 

0 0 0 0 

 

x y z 
0 0 0 

0 0 1 

1 0 2 

0 0 0 
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The relation (3) is not reflexive since no line is perpendicular to itself. Also (4) is not reflexive since no line is 

parallel to itself. The other relations are reflexive; that is, x ≤ x for every x ∈ Z, A ⊆ A for any set A ∈ C, and 

n|n for every positive integer n ∈ N. 

 
Symmetric and Antisymmetric Relations 

A relation R on a set A is symmetric if whenever aRb then bRa, that is, if whenever (a, b) ∈ R then (b, a) ∈ R. Thus 

R is not symmetric if there exists a, b ∈ A such that (a, b) ∈ R but (b, a) ∈/ R. 

 
EXAMPLE 2.7 

 
(a) Determine which of the relations in Example 2.5 are symmetric. 

R1 is not symmetric since (1, 2)  R1 but (2, 1) / R1. R3 is not symmetric since (1, 3)  R3 but (3, 1) / R3. The other 

relations are symmetric. 

 
(b) Determine which of the relations in Example 2.6 are symmetric. 

The relation is symmetric since if line a is perpendicular to line b then b is perpendicular to a. Also, is symmetric 

since if line a is parallel to line b then b is parallel to line a. The other relations are not symmetric. For example: 

 

3 ≤ 4 but 4 /≤ 3; {1, 2}⊆ {1, 2, 3} but {1, 2, 3} /⊆ {1, 2}; and 2 | 6 but 6 / | 2. 

A relation R on a set A is antisymmetric if whenever aRb and bRa then a b, that is, if a b and aRb then b/Ra. 

Thus R is not antisymmetric if there exist distinct elements a and b in A such that aRb and bRa. 

 
 

EXAMPLE 2.8 

 
(a) Determine which of the relations in Example 2.5 are antisymmetric. 

R2 is not antisymmetric since (1, 2) and (2, 1) belong to R2, but 1 2. Similarly, the universal relation R3 

is not antisymmetric. All the other relations are antisymmetric. 

 
(b) Determine which of the relations in Example 2.6 are antisymmetric. 

The relation ≤ is antisymmetric since whenever a ≤ b and b ≤ a then a = b. Set inclusion ⊆ is antisymmetric since 

whenever A ⊆ B and B  ⊆ A then A  = B. Also, divisibility on N is antisymmetric since whenever  m | n and n | 
m then m = n. (Note that divisibility on Z is not antisymmetric since 3 | −3 and −3 | 3 but 3 /= −3.) The 

relations ⊥ and ǁ are not antisymmetric. 

 
Remark: The properties of being symmetric and being antisymmetric are not negatives of each other. For example, the 

relation R  = {(1, 3), (3, 1), (2, 3)} is neither symmetric nor antisymmetric. On the other hand, the relation RJ = 

{(1, 1), (2, 2)} is both symmetric and antisymmetric. 

 
Transitive Relations 

A relation R on a set A is transitive if whenever aRb and bRc then aRc, that is, if whenever (a, b), (b, c) ∈ R 

then (a, c) ∈ R. Thus R is not transitive if there exist a, b, c ∈ R such that (a, b), (b, c) ∈ R but (a, c) ∈/ R. 
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EXAMPLE 2.9 

(a) Determine which of the relations in Example 2.5 are transitive. 

The relation R3 is not transitive since (2, 1), (1, 3) ∈ R3 but (2, 3) ∈/  R3. All the other relations are transitive. 

(b) Determine which of the relations in Example 2.6 are transitive. 

The relations  ,  , and  are transitive, but certainly not  . Also, since no line is parallel to itself, we can  have a   b 

and b   a, but a   a. Thus   is not transitive. (We note that the relation “is parallel or equal to” is  a transitive relation 

on the set L of lines in the plane.) 

The property of transitivity can also be expressed in terms of the composition of relations. For a relation R on A 

we did define R2 = R◦R and, more generally, Rn = Rn−1◦R. Then we have the following result: 

Theorem 2.2: A relation R is transitive if and only if, for every n ≥ 1, we have Rn ⊆ R. 

2.5 CLOSURE PROPERTIES 

Consider a given set A and the collection of all relations on A. Let P be a property of such relations, such as being 

symmetric or being transitive. A relation with property P will be called a P-relation. The P-closure of an arbitrary 

relation R on A, written P (R), isa P-relation such that 

R ⊆ P (R) ⊆ S 

for every P-relation S containing R. We will write 

reflexive(R),    symmetric(R),    and    transitive(R) for the reflexive, symmetric, and 

transitive closures of R. 

Generally speaking, P (R) need not exist. However, there is a general situation where P (R) will always exist. 

Suppose P is a property such that there is at least one P-relation containing R and that the intersection of any P-

relations is again a P-relation. Then one can prove (Problem 2.16) that 

P (R) = ∩(S | S is a P -relation and R ⊆ S) 

Thus one can obtain P (R) from the “top-down,” that is, as the intersection of relations. However, one usually 

wants to find P (R) from the “bottom-up,” that is, by adjoining elements to R to obtain P (R). This we do below. 

 
Reflexive and Symmetric Closures 

The next theorem tells us how to obtain easily the reflexive and symmetric closures of a relation. Here 

OA = {(a, a) | a ∈ A} is the diagonal or equality relation on A. 

Theorem 2.3: Let R be a relation on a set A. Then: 

(i) R ∪ OA is the reflexive closure of R. 

(ii) R ∪ R−1 is the symmetric closure of R. 

In other words, reflexive(R) is obtained by simply adding to R those elements (a, a) in the diagonal which do not 

already belong to R, and symmetric(R) is obtained by adding to R all pairs (b, a) whenever (a, b) belongs to R. 

 

 

EXAMPLE 2.10 Consider the relation R = {(1, 1), (1, 3), (2, 4), (3, 1), (3, 3), (4, 3)} on the set A = {1, 2, 3, 4}. 
 

reflexive(R) = R ∪ {(2, 2), (4, 4)} and symmetric(R) = R ∪ {(4, 2), (3, 4)} 

The
n 
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Transitive Closure 

Let R be a relation on a set A. Recall that R2 = R◦R and Rn = Rn−1◦R. We define 

∞ 

R∗ = R 

i=1 

The following theorem applies: 

Theorem 2.4:  R∗ is the transitive closure of R. 

Suppose A is a finite set with n elements. We show in Chapter 8 on graphs that 
 

R∗ = R ∪ R2 ∪ . . . ∪ Rn 

This gives us the following theorem: 

Theorem 2.5: Let R be a relation on a set A with n elements. Then 
 

transitive (R) = R ∪ R2 ∪ ... ∪ Rn 

 
EXAMPLE 2.11 Consider the relation R = {(1, 2), (2, 3), (3, 3)} on A = {1, 2, 3}. Then: 

R2 = R◦R = {(1, 3), (2, 3), (3, 3)} and R3 = R2◦R = {(1, 3), (2, 3), (3, 3)} 

Accordingly,  
transitive (R) = {(1, 2), (2, 3), (3, 3), (1, 3)} 

 

2.6 EQUIVALENCE RELATIONS 

Consider a nonempty set S. A relation R on S is an equivalence relation if R is reflexive, symmetric, and 

transitive. That is, R is an equivalence relation on S if it has the following three properties: 

 

(1) For every a ∈ S, aRa. (2) If aRb, then bRa. (3) If aRb and bRc, then aRc. 

The general idea behind an equivalence relation is that it is a classification of objects which are in some way 

“alike.” In fact, the relation “=” of equality on any set S is an equivalence relation; that is: 

(1)  a = a for every a ∈ S. (2)  If a = b, then b = a. (3) If a = b, b = c, then a = c. 

Other equivalence relations follow. 

 

 
EXAMPLE 2.12 

 
(a) Let L be the set of lines and let T be the set of triangles in the Euclidean plane. 

 
(i) The relation “is parallel to or identical to” is an equivalence relation on L. 

(ii) The relations of congruence and similarity are equivalence relations on T. 

 
(b) The relation ⊆ of set inclusion is not an equivalence relation. It is reflexive and transitive, but it is not 

symmetric since A ⊆ B does not imply B ⊆ A. 
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(c) Let m be a fixed positive integer. Two integers a and b are said to be congruent modulo m, written 

a ≡ b (mod m) 

if m divides a − b. For example, for the modulus m = 4, we have 

11 ≡ 3 (mod 4) and  22 ≡ 6 (mod 4) 

since 4 divides 11 3 8 and 4 divides 22 6 16. This relation of congruence modulo m is an important 

equivalence relation. 

 

Equivalence Relations and Partitions 

This subsection explores the relationship between equivalence relations and partitions on a non-empty set S. 

Recall first that a partition P of S is a collection {Ai } of nonempty subsets of S with the following two properties: 

(1) Each a ∈ S belongs to some Ai . 

(2) If Ai /= Aj then Ai ∩ Aj = ∅. 

In other words, a partition P of S is a subdivision of S into disjoint nonempty sets. (See Section 1.7.) 

Suppose R is an equivalence relation on a set S. For each a S, let [a] denote the set of elements of S to 

which a is related under R; that is: 

[a] = {x | (a, x) ∈ R } 

We call [a] the equivalence class of a in S; any b ∈ [a] is called a representative of the equivalence class. 

The collection of all equivalence classes of elements of S under an equivalence relation R is denoted by S/R, that 

is, 

S/R = {[a] | a ∈ S} 

It is called the quotient set of S by R. The fundamental property of a quotient set is contained in the following 

theorem. 

Theorem 2.6: Let R be an equivalence relation on a set S. Then S/R is a partition of S. Specifically: 
 

(i) For each a in S, we have a ∈ [a]. 

(ii) [a]= [b] if and only if (a, b) ∈ R. 

(iii) If [a] /= [b], then [a] and [b] are disjoint. 

Conversely, given a partition Ai of the set S, there is an equivalence relation R on S such that the sets Ai  are  

the equivalence classes. 

This important theorem will be proved in Problem 2.17. 

 

 
EXAMPLE 2.13 

(a) Consider the relation R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)} on S = {1, 2, 3}. 

One can show that R is reflexive, symmetric, and transitive, that is, that R is an equivalence relation. Also: 

[1] = {1, 2}, [2]= {1, 2}, [3]= {3} 

Observe that 1 2  and that S/R 1 , 3 is a partition of S. One can choose either 1, 3 or  2, 3  as 

a set of representatives of the equivalence classes. 
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(b) Let R5 be the relation of congruence modulo 5 on the set Z of integers denoted by 

x ≡ y (mod 5) 

This means that the difference x y is divisible by 5. Then R5 is an equivalence relation on Z. The quotient set Z/R5 

contains the following five equivalence classes: 

A0 = {..., −10, −5, 0, 5, 10,.. .} 
A1 = { . . . ,  −9, −4, 1, 6, 11,.. .} 
A2 = { . . . ,  −8, −3, 2, 7, 12,..  .} 
A3 = { . . . ,  −7, −2, 3, 8, 13,..  .} 

A4 = { . . . ,  −6, −1, 4, 9, 14,..  .} 

Any integer x, uniquely expressed in the form x  5q  r where 0   r < 5, is a member of the equivalence class Ar , 
where r is the remainder. As expected, Z is the disjoint union of equivalence classes A1, A2, A3, A4. Usually one 

chooses {0, 1, 2, 3, 4} or {−2, −1, 0, 1, 2} as a set of representatives of the equivalence classes. 

2.7 PARTIAL ORDERING RELATIONS 

A relation R on a set S is called a partial ordering or a partial order of S if R is reflexive, antisymmetric, and 

transitive. A set S together with a partial ordering R is called a partially ordered set or poset. Partially ordered sets 

will be studied in more detail in Chapter 14, so here we simply give some examples. 

 

 
EXAMPLE 2.14 

(a) The relation of set inclusion is a partial ordering on any collection of sets since set inclusion has the three 

desired properties. That is, 

(1) A ⊆ A for any set A. 

(2) If A ⊆ B and B ⊆ A, then A = B. 

(3) If A ⊆ B and B ⊆ C, then A ⊆ C. 

(b) The relation on the set R of real numbers is reflexive, antisymmetric, and transitive. Thus is a partial ordering 

on R. 

(c) The relation “a divides b,” written a | b, is a partial ordering on the set N of positive integers. However, “a 

divides b” is not a partial ordering on the set Z of integers since a | b and b | a need not imply a = b. For 

example, 3 | −3 and −3 | 3 but 3 /= −3. 

 
2.8 n-ARY RELATIONS 

All the relations discussed above were binary relations. By an n-ary relation, we mean a set of ordered n-tuples. 

For any set S, a subset of the product set Sn is called an n-ary relation on S. In particular, a subset of S3 is called a 

ternary relation on S. 

 

 
EXAMPLE 2.15 

(a) Let L be a line in the plane. Then “betweenness” is a ternary relation R on the points of L; that is, (a, b, c) R 

if b lies between a and c on L. 

(b) The equation x2  y2  z2   1 determines a ternary relation T on the set R of real numbers. That is, a triple (x, 

y, z) belongs to T if (x, y, z) satisfies the equation, which means (x, y, z) is the coordinates of a point in R3 

on the sphere S with radius 1 and center at the origin O = (0, 0, 0). 
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Functions 

 

Suppose that to each element of a set A we assign a unique element of a set B; the collection of such assignments 

is called a function from A into B. The set A is called the domain of the function, and the set B is called the target 

set or codomain. 

Functions are ordinarily denoted by symbols. For example, let f denote a function from A into B. Then we write 

f : A → B 

which is read: “f is a function from A into B,” or “f takes (or maps) A into B.” If a A, then f(a) (read: “f of a”) 

denotes the unique element of B which f assigns to a; it is called the image of a under f, or the value of f at a. 

The set of all image values is called the range or image of f. The image of f A B is denoted by Ran(f), 

Im(f) or f(A). 

Frequently, a function can be expressed by means of a mathematical formula. For example, consider the function 

which sends each real number into its square. We may describe this function by writing 

f(x) = x2 or x ›→ x2 or y = x2 

In the first notation, x is called a variable and the letter f denotes the function. In the second notation, the barred 

arrow is read “goes into.” In the last notation, x is called the independent variable and y is called the dependent 

variable since the value of y will depend on the value of x 

 

                                                          
 

Fig. 3-1 

 
EXAMPLE 3.1 

(a) Consider the function f(x) = x3, i.e., f assigns to each real number its cube. Then the image of 2 is 8, 

and so we may write f (2) = 8. 

(b) Figure 3-1 defines a function f from A = {a, b, c, d} into B = {r, s, t, u} in the obvious way. Here 

f(a) = s, f (b) = u, f (c) = r, f (d) = s 

The image of f is the set of image values, r, s, u . Note that t does not belong to the image of f because t is not 

the image of any element under f. 

(c) Let A be any set. The function from A into A which assigns to each element in A the element itself is 
called the identity function on A and it is usually denoted by 1A, or simply 1. In other words, for every a 

∈ A, 

1A(a) = a. 

(d) Suppose S is a subset of A, that is, suppose S ⊆ A. The inclusion map or embedding of S into A, denoted by 

i: S >→ A is the function such that, for every x ∈ S, 

i(x) = x 

The restriction of any function f : A → B, denoted by f |S is the function from S into B such that, for any x ∈ S, 

f |S (x) = f(x) 
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Functions as Relations 

There is another point of view from which functions may be considered. First of all, every function f A B 

gives rise to a relation from A to B called the graph of f and defined by 

Graph of f = {(a, b) | a ∈ A, b = f(a)} 

Two functions f  A     B and g  A     B are defined to be equal, written f   g, if f(a)    g(a) for every a 
A; that is, if they have the same graph. Accordingly, we do not distinguish between a function and its graph. 
Now, such a graph relation has the property that each a in A belongs to a unique ordered pair (a, b) in the relation. 

On the other hand, any relation f from A to B that has this property gives rise to a function f : A → B, where 

f(a) = b for each (a, b) in f. Consequently, one may equivalently define a function as follows: 

Definition: A function f A   B is a relation from A to B (i.e., a subset of A   B) such that each a   A belongs to 

a unique ordered pair (a, b) in f. 

Although we do not distinguish between a function and its graph, we will still use the terminology “graph of f ” 

when referring to f as a set of ordered pairs. Moreover, since the graph of f is a relation, we can draw its picture 

as was done for relations in general, and this pictorial representation is itself sometimes called the graph of f. 

Also, the defining condition of a function, that each a  A belongs to a unique pair (a, b) in f, is equivalent to the 

geometrical condition of each vertical line intersecting the graph in exactly one point. 

EXAMPLE 3.2 

(a) Let f : A → B be the function defined in Example 3.1 (b). Then the graph of f is as follows: 

{(a, s), (b, u), (c, r), (d, s)} 

(b) Consider the following three relations on the set A = {1, 2, 3}: 

f = {(1, 3), (2, 3), (3, 1)}, g = {(1, 2), (3, 1)}, h = {(1, 3), (2, 1), (1, 2), (3, 1)} 

f is a function from A into A since each member of A appears as the first coordinate in exactly one ordered pair 

in f; here f (1)  3,f(2)  3, and f (3)   1. g is not a function from A into A since 2  A is not the first coordinate 

of any pair in g and so g does not assign any image to 2. Also h is not a function from A into 

A since 1 ∈ A appears as the first coordinate of two distinct ordered pairs in h, (1, 3) and (1, 2). If h is to be a 

function it cannot assign both 3 and 2 to the element 1 ∈ A. 

(c) By a real polynomial function, we mean a function f : R → R of the form 

f(x) = anxn + an−1xn−1 + · · ·  + a1x + a0 

where the ai are real numbers. Since R is an infinite set, it would be impossible to plot each point of the graph. 

However, the graph of such a function can be approximated by first plotting some of its points and then drawing a 

smooth curve through these points. The points are usually obtained from a table where various values are 

assigned to x and the corresponding values of f(x) are computed. Figure 3-2 illustrates this 

technique using the function f(x) = x2 − 2x − 3. 



   
 

: → 

: → 

: → = 
: → 

: → : → : → : → 

Fig. 3-2 

 

 
Composition Function 

Consider functions f : A → B and g: B → C; that is, where the codomain of f is the domain of g. Then we 

may define a new function from A to C, called the composition of f and g and written g◦f , as follows: 

(g◦f )(a) ≡ g(f (a)) 

That is, we find the image of a under f and then find the image of f(a) under g. This definition is not really 

new. If we view f and g as relations, then this function is the same as the composition of f and g as relations (see 

Section 2.6) except that here we use the functional notation g◦f  for the composition of f and g instead of the 

notation f ◦g which was used for relations. 

Consider any function f : A → B. Then 

f ◦1A = f and 1B ◦f  = f 

where 1A and 1B are the identity functions on A and B, respectively. 

 
 

3.1 ONE-TO-ONE, ONTO, AND INVERTIBLE FUNCTIONS 

A function f : A  → B  is said to be one-to-one (written 1-1) if different elements in the domain A have distinct 

images. Another way of saying the same thing is that f is one-to-one if f (a) = f (a J) implies a = a J. 

A function f A B is said to be an onto function if each element of B is the image of some element of A. In 

other words, f A B is onto if the image of f is the entire codomain, i.e., if f(A)  B. In such a case we say 

that f is a function from A onto B or that f maps A onto B. 

A function f A B is invertible if its inverse relation f −1 is a function from B to A. In general, the inverse relation 

f −1 may not be a function. The following theorem gives simple criteria which tells us when it is. 

Theorem 3.1: A function f : A → B is invertible if and only if f is both one-to-one and onto. 

If f A B is one-to-one and onto, then f is called a one-to-one correspondence between A and B. This 

terminology comes from the fact that each element of A will then correspond to a unique element of B and vice 

versa. 

Some texts use the terms injective for a one-to-one function, surjective for an onto function, and bijective for a 

one-to-one correspondence. 

 

EXAMPLE 3.3  Consider the functions f1  A       B, f2  B       C, f3  C       D and f4  D       E defined by the 
diagram of Fig. 3-3. Now f1 is one-to-one since no element of B is the image of more than one element of A. 

Similarly, f2 is one-to-one. However, neither f3 nor f4 is one-to-one since f3(r) = f3(u) and f4(v) = f4(w) 

 

Fig. 3-3 

 
As far as being onto is concerned, f2 and f3 are both onto functions since every element of C is the image under 

f2 of some element of B and every element of D is the image under f3 of some element of C, f2(B) = C and 

f3(C) = D. On the other hand, f1 is not onto since 3 ∈ B is not the image under f4 of any element of A. and f4 
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is not onto since x ∈ E is not the image under f4 of any element of D. 
Thus f1  is one-to-one but not onto, f3  is onto but not one-to-one and f4  is neither one-to-one nor onto. 

However, f2  is both one-to-one and onto, i.e., is a one-to-one correspondence between A and B. Hence f2  is 

invertible and f2
−1 is a function from C to B. 

 
Geometrical Characterization of One-to-One and Onto Functions 

Consider now functions of the form  f   R        R. Since the graphs of such functions may be plot-         ted in 

the Cartesian plane R2 and since functions may be identified with their graphs, we might wonder 

whether the concepts of being one-to-one and onto have some geometrical meaning. The answer is yes. 

Specifically: 

(1) f :R → R is one-to-one if each horizontal line intersects the graph of f in at most one point. 

(2) f :R → R is an onto function if each horizontal line intersects the graph of f at one or more points. 

Accordingly, if f is both one-to-one and onto, i.e. invertible, then each horizontal line will intersect the graph 

of 

f at exactly one point. 

 

 
EXAMPLE 3.4 Consider the following four functions from R into R: 

f1(x) = x2, f2(x) = 2x , f3(x) = x3 − 2x2 − 5x + 6, f4(x) = x3 

The graphs of these functions appear in Fig. 3-4. Observe that there are horizontal lines which intersect the graph 

of f1 twice and there are horizontal lines which do not intersect the graph of f1 at all; hence f1 is neither one- 

to-one nor onto. Similarly, f2 is one-to-one but not onto, f3 is onto but not one-to-one and f4 is both one-to-one 

and onto. The inverse of f4 is the cube root function, i.e., f4
−1(x) =  3  x . 

 

Fig. 3-4 

 

 

Permutations 

An invertible (bijective) function σ  X X is called a permutation on X. The composition and inverses 

of permutations on X and the identity function on X are also permutations on X. 

Suppose X = {1, 2,..., n}. Then a permutation σ on X is frequently denoted by 

1 2 3 · · ·  n 

1 2 3 · · ·  n 

where j1 σ(i).  The set of all such permutations is denoted by Sn, and there are n n(n 1) 3 2 1 of 

them. For example, 

σ = 

. 
1   2   3   4   5    6 

Σ 

and τ = 

. 
1 2 3 4 5 6 

Σ
 

are permutations in S6, and there are 6! = 720 of them. Sometimes, we only write the second line of the 

permutation, that is, we denote the above permutations by writing σ = 462513 and τ = 643125. 



   
 

3.2 MATHEMATICAL FUNCTIONS, EXPONENTIAL AND LOGARITHMIC FUNCTIONS 

This section presents various mathematical functions which appear often in the analysis of algorithms, and in 

computer science in general, together with their notation. We also discuss the exponential and logarithmic 

functions, and their relationship. 

Floor and Ceiling Functions 

Let x be any real number. Then x lies between two integers called the floor and the ceiling of x. Specifically, 
 

⎝x], called the floor of x, denotes the greatest integer that does not exceed x. 

Jx], called the ceiling of x, denotes the least integer that is not less than x. If x is 

itself an integer, then ⎝x]= Jx]; otherwise ⎝x]+ 1 = Jx]. For example, 

⎝3.14] = 3, 
,√

5
, 

= 2, ⎝−8.5] = −9, ⎝7] = 7, ⎝−4] = −4, 

J3.14] = 4, 
,√

5
, 

= 3, J−8.5] = −8, J7] = 7, J−4] = −4 

Integer and Absolute Value Functions 

Let x be any real number. The integer value of x, written INT(x), converts x into an integer by deleting 

(truncating) the fractional part of the number. Thus 

INT(3.14) = 3, INT(
√

5) = 2, INT(−8.5) = −8, INT(7) = 7 

Observe that INT(x) = ⎝x] or INT(x) = Jx] according to whether x is positive or negative. 

The absolute value of the real number x, written ABS(x) or |x|, is defined as the greater of x or −x. Hence 

ABS(0) = 0, and, for x /= 0, ABS(x) = x or ABS(x) = −x, depending on whether x is positive or negative. 
 

|− 15|= 15, |7|= 7, |− 3.33|= 3.33, |4.44|= 4.44, |− 0.075|= 0.075 

We note that |x|=| − x| and, for x /= 0, |x| is positive. 

 

 

Thu
s 
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        BASIC COUNTING PRINCIPLES 

There are two basic counting principles used throughout this chapter. The first one involves addition and the 

second one multiplication. 

 

 

 

The above principles can be extended to three or more events. That is, suppose an event E1 can occur in n1 

ways, a second event E2 can occur in n2 ways, and, following E2; a third event E3 can occur in n3 ways, and so 
on. Then: 

Sum Rule: If no two events can occur at the same time, then one of the events can occur in: 

n1 + n2 + n3 + ··· ways. 

Product Rule: If the events occur one after the other, then all the events can occur in the order indicated in: 

n1 · n2 · n3 · ... ways. 

 
EXAMPLE  Suppose a college has 3 different history courses, 4 different literature courses, and 2 different 

sociology courses. 

 
(a) The number m of waysa student can choose one of each kind of courses is: 

 

m = 3(4)(2) = 24 

 
(b) The number n of ways a student can choose just one of the courses is: 

 

n = 3 + 4 + 2 = 9 

 
There is a set theoretical interpretation of the above two principles. Specifically, suppose n(A) denotes the 

number of elements in a set A. Then: 

 
(1) Sum Rule Principle: Suppose A and B are disjoint sets. Then 

 

n(A ∪ B) = n(A) + n(B) 

(2) Product Rule Principle: Let A × B be the Cartesian product of sets A and B. Then 

Sum Rule Principle: 

Suppose some event E can occur in m ways and a second event F can occur in n ways, and suppose both 
events cannot occur simultaneously. Then E or F can occur in m + n ways. 

Product Rule Principle: 

Suppose there is an event E which can occur in m ways and, independent of this event, there is a second event 

F which can occur in n ways. Then combinations of E and F can occur in mn ways. 



   
 

r 

n(A × B) = n(A) · n(B) 

 
MATHEMATICAL FUNCTIONS 

We discuss two important mathematical functions frequently used in combinatorics. 

 
 

Factorial Function 

The product of the positive integers from 1 to n inclusive is denoted by n!, read “n factorial.” Namely: 
 

n != 1 · 2 · 3 · . . .  · (n−2)(n−1)n = n(n−1)(n−2) · . . .  · 3 · 2 · 1 

Accordingly, 1!= 1 and n != n(n − l)!. It is also convenient to define 0!= 1. 

 
EXAMPLE .2 

 

(a) 3!= 3 · 2 · 1 = 6, 4!= 4 · 3 · 2 · 1 = 24, 5 = 5 · 4!= 5(24) = 120. 

 

(c) 12 · 11 · 10 
= 

12 · 11 · 10 · 9! 
=

 12! 

(d)  
and, more generally, · 2 · 1 3 · 2 · 1 · 9! 3! 9! 

n(n − 1) · · ·  (n − r + 1) 
= 

n(n − 1) · · ·  (n − r + 1)(n − r)! 
=

  n!  

r(r − 1) · · ·  3 · 2 · 1 r(r − 1) · · ·  3 · 2 · 1 · (n − r)! r!(n − r)! 

 

(e) For large n, one uses Stirling’s approximation (where e = 2.7128...): 

n!= 
√

2πn nne−n 

Binomial Coefficients 

The symbol 

.
n
Σ

, read “nCr” or “n Choose r,” where r and n are positive integers with r ≤ n, is defined as 

follows: 

.
n
Σ 

= 
n(n − 1) · · · (n − r + 1) 

or equivalently 

.
n
Σ 

= 
  n! 

 

r r(r − 1 ) . . .  3 · 2 · 1 r r!(n − r)! 

 

Note that n − (n − r) = r. This yields the following important relation. 

Lemma .1:  

.   
n   

Σ 

= 

.
n
Σ 

or equivalently, 

.
n
Σ 

= 

.
n
Σ 

where a + b = n. 

n − r r a b 

Motivated by that fact that we defined 0!= 1, we define: 

.
n
Σ 

= 
  n! = 1    and 

.
0
Σ 

= 
  0!   

= 1 



   
 

r 

7 

r 

n 

+ 

0 0!n! 0 0! 0! 

 

 

EXAMPLE 3 

(a)   

.
8
Σ 

= 
8 · 7  

= 28;    

.
9
Σ 

= 
9 · 8 · 7 · 6  

= 126;    

.
12
Σ 

= 
12 · 11 · 10 · 9 · 8  

= 792.
 

2 2 · 1 4 4 · 3 · 2 · 1 5 5 · 4 · 3 · 2 · 1 

Note that 

.
n
Σ 

has exactly r factors in both the numerator and the denominator. 

(b) Suppose we want to compute 

.
10
Σ

.  There will be 7 factors in both the numerator and the denominator. 

However, 10 − 7 = 3. Thus, we use Lemma 5.1 to compute: 

.
10
Σ 

= 

.
10
Σ 

= 
10 · 9 · 8  

= 120
 

7 3 3 · 2 · 1 

 

 
Binomial Coefficients and Pascal’s Triangle 

The numbers 

.
n
Σ 

are called binomial coefficients, since they appear as the coefficients in the expansion of 

(a + b)n. Specifically: 

Theorem (Binomial Theorem) 2: (a + b)n = 
.

k=0 

.
n

Σ 

 

 

an−kbk 

The coefficients of the successive powers of a b can be arranged in a triangular array of numbers, called 

Pascal’s triangle, as pictured in Fig. 5-1. The numbers in Pascal’s triangle have the following interesting properties: 

 
(i) The first and last number in each row is 1. 

(ii) Every other number can be obtained by adding the two numbers appearing above it. For example: 

 

10 = 4 + 6, 15 = 5 + 10, 20 = 10 + 10. 

Since these numbers are binomial coefficients, we state the above property formally. 

r 



   
 

≤ 

(n − r)! 

= · · = 

 
 

Theorem 3:  

.
n + 1

Σ 

= 

.   
n

 

Fig. -1 Pascal’s triangle 

Σ 

+ 

.
n
Σ

.

 

r r − 1 r 

 
 

5.1 PERMUTATIONS 

Any arrangement of a set of n objects in a given order is called a permutation of the object (taken all at a time). 

Any arrangement of any r n of these objects in a given order is called an “r-permutation” or “a permutation of 

the n objects taken r at a time.” Consider, for example, the set of letters A, B, C, D. Then: 

(i) BDCA, DCBA, and ACDB are permutations of the four letters (taken all at a time). 
(ii) BAD, ACB, DBC are permutations of the four letters taken three at a time. 

(iii) AD, BC, CA are permutations of the four letters taken two at a time. 

We usually are interested in the number of such permutations without listing them. 

The number of permutations of n objects taken r at a time will be denoted by 

P (n, r) (other texts may use nPr , Pn,r, or (n)r ). 

The following theorem applies. 

Theorem 4:  P (n, r) = n(n − 1)(n − 2) · ··  (n − r + 1) =
 n! 

 

We emphasize that there are r factors in n(n − 1)(n − 2) ··· (n − r + 1). 

 
EXAMPLE 4 Find the number m of permutations of six objects, say, A, B, C, D, E, F, taken three at a time. In 

other words, find the number of “three-letter words” using only the given six letters without repetition. 

Let us represent the general three-letter word by the following three positions: 

——,  ——, —— 

The first letter can be chosen in 6 ways; following this the second letter can be chosen in 5 ways; and, finally, the 

third letter can be chosen in 4 ways. Write each number in its appropriate position as follows: 

  6 , 5 , 4  

By the Product Rule there are m  6  5  4  120 possible three-letter words without repetition from the six   letters. 

Namely, there are 120 permutations of 6 objects taken 3 at a time. This agrees with the formula in Theorem 5.4: 

P (6, 3) = 6 · 5 · 4 = 120 

In fact, Theorem 4 is proven in the same way as we did for this particular case. 
 

Consider now the special case of P (n, r) when r = n. We get the following result. 



   
 

!=  = 

! 

= ; = = = 

Corollary 5: There are n! permutations of n objects (taken all at a time). 

For example, there are 3 != 6 permutations of the three letters A, B, C. These are: 

ABC, ACB, BAC, BCA, CAB, CBA. 

 
 

Permutations with Repetitions 

Frequently we want to know the number of permutations of a multiset, that is, a set of objects some of which 

are alike. We will let 

P (n; n1, n2, ..., nr ) 

denote the number of permutations of n objects of which n1 are alike, n2 are alike, .. ., nr are alike. The general 
formula follows: 

Theorem 6: P (n; n , n , . . . ,  n ) =
  n! 

 

1 2 r n1! n2! . . .  nr ! 

We indicate the proof of the above theorem by a particular example. Suppose we want to form all possible 

five-letter “words” using the letters from the word “BABBY.” Now there are 5 != 120 permutations of the objects 
B1, A, B2, B3, Y, where the three B’s are distinguished. Observe that the following six permutations 

 

B1B2 B3AY , B2B1 B3AY , B3B1 B2AY , B1B3 B2AY , B2B3 B1AY , B3B2 B1AY 

produce the same word when the subscripts are removed. The 6 comes from the fact that there are 3 3·2·1 6 

different ways of placing the three B’s in the first three positions in the permutation. This is true for each set of 

three positions in which the B’s can appear. Accordingly, the number of different five-letter words that can be 

formed using the letters from the word “BABBY” is: 
 

P (5; 3) 
5 

= 
3! 

= 20 

 
 

EXAMPLE 5 Find the number m of seven-letter words that can be formed using the letters of the word 

“BENZENE.” 

 
We seek the number of permutations of 7 objects of which 3 are alike (the three E’s), and 2 are alike (the two 

N’s). By Theorem 5.6, 

m P (7  3, 2) 
 7!

 

3!2! 

7 · 6 · 5 · 4 · 3 · 2 · 1 
420

 

3 · 2 · 1 · 2 · 1 

 

Ordered Samples 

Many problems are concerned with choosing an element from a set S, say, with n elements. When we choose 

one element after another, say, r times, we call the choice an ordered sample of size r. We consider two cases. 

 
 

(1) Sampling with replacement 
 

Here the element is replaced in the set S before the next element is chosen. Thus, each time there are n ways 

to choose an element (repetitions are allowed). The Product rule tells us that the number of such samples is: 
 

n · n · n ··· n · n(r factors) = nr 



   
 

(n − r)! 

r 

(2) Sampling without replacement 
 

Here the element is not replaced in the set S before the next element is chosen. Thus, there is no repetition 

in the ordered sample. Such a sample is simply an r-permutation. Thus the number of such samples is: 

P (n, r) = n(n − 1) (n − 2) · · ·  (n − r + 1) =
    n! 

 

 

 
 

EXAMPLE 6 Three cards are chosen one after the other from a 52-card deck. Find the number m of ways this 

can be done: (a) with replacement; (b) without replacement. 

 

(a) Each card can be chosen in 52 ways. Thus m = 52(52)(52) = 140 608. 

(b) Here there is no replacement. Thus the first card can be chosen in 52 ways,  the second in 51 ways,  and  

the third in 50 ways. Therefore: 

 

m = P (52, 3) = 52(51)(50) = 132 600 

 
COMBINATIONS 

Let S be a set with n elements. A combination of these n elements taken r at a time is any selection of r of 

the elements where order does not count. Such a selection is called an r-combination; it is simply a subset of S 

with r elements. The number of such combinations will be denoted by 

 

C(n, r) (other texts may use nCr , Cn,r, or Cn). 

 

Before we give the general formula for C(n, r), we consider a special case. 

 

 
EXAMPLE 7 Find the number of combinations of 4 objects, A, B, C, D, taken 3 at a time. 

Each combination of three objects determines 3!= 6 permutations of the objects as follows: 

ABC :  ABC,  ACB,   BAC,   BCA,   CAB,   CBA ABD :  

ABD,  ADB,  BAD,  BDA,  DAB,   DBA  ACD :  ACD,  ADC,  

CAD,  CDA,  DAC,  DCA  BCD : BDC, BDC, CBD, CDB, 
DBC, DCB 

Thus the number of combinations multiplied by 3! gives us the number of permutations; that is, 
 

C(4, 3) · 3!= P (4, 3)    or C(4, 3) = 
P (4, 3) 

 
 

3! 

But P (4, 3) = 4 · 3 · 2 = 24 and 3!= 6; hence C(4, 3) = 4 as noted above. 

As indicated above, any combination of n objects taken r at a time determines r! permutations of the objects 

in the combination; that is, 

P (n, r) = r! C(n, r) 

Accordingly, we obtain the following formula for C(n, r) which we formally state as a theorem. 



   
 

r 

+ 

= { } 

= + = = + = 

Theorem 7:   C(n, r) = 
P (n, r) 

= 
n!

 
  

r! r!(n − r)! 

Recall that the binomial coefficient

.
n
Σ 

was defined to be 
  n! 

; hence 

r r!(n − r)! 

 

We shall use C(n,  r) and 

.
n
Σ 

interchangeably. 

 
EXAMPLE 8 A farmer buys 3 cows, 2 pigs, and 4 hens from a man who has 6 cows, 5 pigs, and 8 hens. Find 

the number m of choices that the farmer has. 

The farmer can choose the cows in C(6, 3) ways, the pigs in C(5, 2) ways, and the hens in C(8, 4) ways. 

Thus the number m of choices follows: 

m = 

.
6
Σ.

5
Σ.

8
Σ 

= 
6 · 5 · 4 

· 
5 · 4 

· 
8 · 7 · 6 · 5  

= 20 · 10 · 70 = 14 000 

3 2 4 3 · 2 · 1 2 · 1 4 · 3 · 2 · 1 

 

 

THE PIGEONHOLE PRINCIPLE 

Many results in combinational theory come from the following almost obvious statement. 

Pigeonhole Principle:  If n pigeonholes are occupied by n 1 or more pigeons, then at least one pigeonhole is 

occupied by more than one pigeon. 

This principle can be applied to many problems where we want to show that a given situation can occur. 

 

 
EXAMPLE 9 

 
(a) Suppose a department contains 13 professors, then two of the professors (pigeons) were born in the same 

month (pigeonholes). 
 

(b) Find the minimum number of elements that one needs to take from the  set S 1, 2, 3 , . . . ,  9 to be sure 

that two of the numbers add up to 10. 

Here the pigeonholes are the five sets {1, 9}, {2, 8}, {3, 7}, {4, 6}, {5}. Thus any choice of six elements 

(pigeons) of S will guarantee that two of the numbers add up to ten. 

 
The Pigeonhole Principle is generalized as follows. 

 
Generalized Pigeonhole Principle: If n pigeonholes are occupied by kn + 1 or more pigeons, where k is a 
positive integer, then at least one pigeonhole is occupied by k + 1 or more pigeons. 

 
EXAMPLE 10 Find the minimum number of students in a class to be sure that three of them are born in the 

same month. 

Here the n 12 months are the pigeonholes,  and k 1 3 so k 2.  Hence among any kn 1 25 

students (pigeons), three of them are born in the same month. 
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THE INCLUSION–EXCLUSION PRINCIPLE 

Let A and B be any finite sets. Recall Theorem 1.9 which tells us: 

n(A ∪ B) = n(A) + n(B) − n(A ∩ B) 

In other words, to find the number n(A B) of elements in the union of A and B, we add n(A) and n(B) and then 

we subtract n(A  B); that is, we “include” n(A) and n(B), and we “exclude” n(A  B).  This follows from the  fact 

that, when we add n(A) and n(B), we have counted the elements of (A B) twice. 

The above principle holds for any number of sets. We first state it for three sets. 

Theorem 8: For any finite sets A, B, C we have 

n(A ∪ B ∪ C) = n(A) + n(B) + n(C) − n(A ∩ B) − n(A ∩ C) − n(B ∩ C) + n(A ∩ B ∩ C) 

That is, we “include” n(A), n(B), n(C), we “exclude” n(A ∩ B), n(A ∩ C), n(B ∩ C), and finally “include” 

n(A ∩ B ∩ C). 

 
EXAMPLE 11 Find the number of mathematics students at a college taking at least one of the languages 

French, German, and Russian, given the following data: 

65 study French, 20 study French and German, 

45 study German, 25 study French and Russian, 8 study all three 

languages. 42 study Russian, 15 study German and 

Russian, 

We  want to find n(F G R) where F, G, and R denote the sets of students studying French, German, and 

Russian, respectively. 

By the Inclusion–Exclusion Principle, 

n(F ∪ G ∪ R) = n(F) + n(G) + n(R) − n(F ∩ G) − n(F ∩ R) − n(G ∩ R) + n(F ∩ G ∩ R) 

= 65 + 45 + 42 − 20 − 25 − 15 + 8 = 100 

Namely, 100 students study at least one of the three languages. 

Now, suppose we have any finite number of finite sets, say, A1, A2, …, Am. Let sk be the sum of the 
cardinalities 

n(Ai1  
∩ Ai2  

∩ ··· ∩ AiK 
) 

of all possible k-tuple intersections of the given m sets. Then we have the following general Inclusion–Exclusion 

Principle. 

Theorem .9: n(A1 ∪ A2 ∪ ··· ∪ Am) = s1 − s2 + s3 − ··· + (−1)m−1sm. 

. 

Solved Questions 

1.Suppose a bookcase shelf has 5 History texts, 3 Sociology texts, 6 Anthropology texts, and 4 

Psychology texts. Find the number n of ways a student can choose: 

(a) one of the texts; (b) one of each type of text. 

(a) Here the Sum Rule applies; hence, n = 5 + 3 + 6 + 4 = 18. 

(b) Here the Product Rule applies; hence, n = 5 · 3 · 6 · 4 = 360. 



   
 

! 

2.A history class contains 8 male students and 6 female students. Find the number n of ways that the class can 

elect: (a) 1 class representative; (b) 2 class representatives, 1 male and 1 female; (c) 1 president and 1 vice 

president. 

(b) Here the Sum Rule is used; hence, n = 8 + 6 = 14. 

(c) Here the Product Rule is used; hence, n = 8 · 6 = 48. 

(d) There are 14 ways to elect the president, and then 13 ways to elect the vice president. Thus n = 14 · 13 = 182. 

3.There are four bus lines between A and B, and three bus lines between B and C. Find the number m of ways that a man can 

travel by bus: (a) from A to C by way of B; (b) roundtrip from A to C by way of B; (c) roundtrip from A to C by way of B but 

without using a bus line more than once. 

(e) There are 4 ways to go from A to B and 3 ways from B to C; hence n = 4 · 3 = 12. 

(f) There are 12 ways to go from A to C by way of B, and 12 ways to return. Thus n = 12 · 12 = 144. 

(g) The man will travel from A to B to C to B to A. Enter these letters with connecting arrows as follows: 

A → B → C → B → A 

The man can travel four ways from A to B and three ways from B to C, but he can only travel two ways from C to 

B and three ways from B to A since he does not want to use a bus line more than once. Enter these numbers 

above the corresponding arrows as follows: 

 
4 3 2 3 

A → B → C → B → A 

Thus, by the Product Rule, n = 4 · 3 · 2 · 3 = 72. 

 
 

3.State the essential difference between permutations and combinations, with examples. 

Order counts with permutations, such as words, sitting in a row, and electing a president, vice president, and 

treasurer. Order does not count with combinations, such as committees and teams (without counting positions). 

The product rule is usually used with permutations, since the choice for each of the ordered positions may be viewed 

as a sequence of events. 

4. Find: (a) P (7, 3); (b) P (14, 2). 

Recall P (n, r) has r factors beginning with n. 

(a) P (7, 3) = 7 · 6 · 5 = 210; (b) P (14, 2) = 14 · 13 = 182. 

5.Find the number m of ways that 7 people can arrange themselves: 

(a) In a row of chairs; (b) Around a circular table. 

(a) Here m = P (7, 7) = 7! ways. 

(b) One person can sit at any place at the table. The other 6 people can arrange themselves in 6! ways around the 

table; that is m = 6!. 

This is an example of a circular permutation. In general, n objects can be arranged in a circle in (n − 1)! ways. 

6.Find the number n of distinct permutations that can be formed from all the letters of each word: 

(b) THOSE; (b) UNUSUAL; (c) SOCIOLOGICAL. 

This problem concerns permutations with repetitions. 

(a) n = 5!= 120, since there are 5 letters and no repetitions. 
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7.A class contains 10 students with 6 men and 4 women. Find the number n of ways to: 

(c) Select a 4-member committee from the students. 

(d) Select a 4-member committee with 2 men and 2 women. 

(e) Elect a president, vice president, and treasurer. 

(a) This concerns combinations, not permutations, since order does not count in a committee. There are “10 choose 

4” such committees. That is: 

n = C(10, 4) = 

.
10
Σ 

= 
10 · 9 · 8 · 7  

= 210 

4 4 · 3 · 2 · 1 

(b) The 2 men can be chosen from the 6 men in C(6, 2) ways, and the 2 women can be chosen from the 4 women in 

C(4, 2) ways. Thus, by the Product Rule: 

n = 

.
6
Σ.

4
Σ 

= 
6 · 5 

· 
4 · 3  

= 15(6) = 90 

2 2 2 · 1    2 · 1 

(c) This concerns permutations, not combinations, since order does count. Thus, 

n = P (6, 3) = 6 · 5 · 4 = 120 

8.A box contains 8 blue socks and 6 red socks. Find the number of ways two socks can be drawn from the box 

if: 

(f) They can be any color. (b) They must be the same color. 

(a) There are “14 choose 2” ways to select 2 of the 14 socks. Thus: 

n = C(14, 2) = 

.
14
Σ 

= 
14 · 13  

= 91 

2 2 · 1 

(b) There are C(8, 2) = 28 ways to choose 2 of the 8 blue socks, and C(6, 2) = 15 ways to choose 2 of the 4 red 

socks. By the Sum Rule, n = 28 + 15 = 43. 

9.Find the number m of committees of 5 with a given chairperson that can be selected from 12 people. 

The chairperson can be chosen in 12 ways and, following this, the other 4 on the committee can be chosen from 

the 11 remaining in C(11, 4) ways. Thus m = 12·C(11, 4) = 12·330 = 3960. 

10.Find the minimum number n of integers to be selected from S 1, 2 , . . . ,  9 so that: (a) The sum of 
two of the n integers is even. (b) The difference of two of the n integers is 5. 

(g) The sum of two even integers or of two odd integers is even. Consider the subsets {1, 3, 5, 7, 9} and {2, 4, 6, 8} 

of S as pigeonholes. Hence n = 3. 

(h) Consider the five subsets {1, 6}, {2, 7}, {3, 8}, {4, 9}, {5} of S as pigeonholes. Then n 6 will guarantee that two 

integers will belong to one of the subsets and their difference will be 5. 

11.Find the minimum number of students needed to guarantee that five of them belong to the same class 
(Freshman, Sophomore, Junior, Senior). 

Here the n = 4 classes are the pigeonholes and k + 1 = 5 so k = 4. Thus among any kn + 1 = 17 students (pigeons), 
five of them belong to the same class. 

12.Let L be a list (not necessarily in alphabetical order) of the 26 letters in the English alphabet (which 
consists of 5 vowels, A, E, I, O, U, and 21 consonants). 

(i) Show that L has a sublist consisting of four or more consecutive consonants. 

(j) Assuming L begins with a vowel, say A, show that L has a sublist consisting of five or more 

consecutive consonants. 
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(a) The five letters partition L into n = 6 sublists (pigeonholes) of consecutive consonants. Here k + 1 = 4 and so 

k = 3. Hence nk + 1 = 6(3) + 1 = 19 < 21. Hence some sublist has at least four consecutive consonants. 

(b) Since L begins with a vowel, the remainder of the vowels partition L into n = 5 sublists. Here k + 1 = 5 and so 

k = 4. Hence kn + 1 = 21. Thus some sublist has at least five consecutive consonants. 

 
13.There are 22 female students and 18 male students in a classroom. Find the total number t of students. 

The sets of male and female students are disjoint; hence t = 22 + 18 = 40. 

14.Suppose among 32 people who save paper or bottles (or both) for recycling, there are 30 who save paper 

and 14 who save bottles. Find the number m of people who: 

(k) save both; (b) save only paper; (c) save only bottles. 

Let P and B denote the sets of people saving paper and bottles, respectively. Then: 

(a) m = n(P ∩ B) = n(P) + n(B) − n(P ∪ B) = 30 + 14 − 32 = 12 

(b) m = n(P \B) = n(P) − n(P ∩ B) = 30 − 12 = 18 

(c) m = n(B\P) = n(B) − n(P ∩ B) = 14 − 12 = 2 

 

RECURRENCE RELATIONS 

Consider the following sequence which begins with the number 3 and for which each of the following terms is 

found by multiplying the previous term by 2: 

3, 6, 12, 24, 48, . . .   

It can be defined recursively by: 

a0 = 3, ak  = 2ak−1  for k ≥ 1   or a0 = 3, ak+1 = 2ak for k ≥ 0 

The second definition may be obtained from the first by setting k k 1. Clearly, the formula an 3(2n) gives 
us the nth term of the sequence without calculating any previous term. 

 

  

(1) The equation ak=2ak   1  or, equivalently, ak   1=2ak , where one term of the sequence is defined in 
terms of previous terms of the sequence, is called a recurrence relation. 

(2) The equation a0 3, which gives a specific value to one of the terms, is called an initial condition. 

(3) The function an 3(2n), which gives a formula for an as a function of n, not of previous terms, is called 
a solution of the recurrence relation. 

(4) There may be many sequences which satisfy a given recurrence relation. For example, each of the 

following is a solution of the recurrence relation ak = 2ak−1. 

1, 2, 4, 8, 16 ,...  and 7, 14, 28, 56, 112,...   

All such solutions form the so-called general solution of the recurrence relation. 

(5) On the other hand, there may be only a unique solution to a recurrence relation which also satisfies given 

initial conditions. For example, the initial condition a0 = 3 uniquely yields the solution 3, 6, 12, 24, .. .  

of the recurrence relation ak = 2ak−1. 
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EXAMPLE  

(a) Arithmetic Progression 

An arithmetic progression is a sequence of the form 

a, a + d, a + 2d, a + 3d,...  

That is, the sequence begins with the number a and each successive term is obtained from the previous 

term by adding d (the common difference between any two terms). For example: 

(i) a = 5, d = 3: 5, 8, 9, 11,...  

(ii)  a = 2, d = 5:   2, 7, 12, 17 , . . .   

(iii)  a = 1, d = 0:   1, 1, 1, 1, 1 , . . .   

We note that the general arithmetic progression may be defined recursively by: 

a1 = a and ak+1  = ak + d for k ≥ 

1 where the solution is an = a + (n − 1)d. 

(b) Geometric Progression 

A geometric progression is a sequence of the form 

a, ar, ar2, ar3,...  

That is, the sequence begins with the number a and each successive term is obtained from the previous 

term by multiplying by r (the common ratio between any two terms) for example: 

(i) a = 1, r = 3: 1, 3, 9, 27, 81,...  

(ii) a = 5, r = 2: 5, 10, 20, 40,...  

(iii) a = 1, r = 1 : 1, 1 , 1 , 1 ,...  

We note that the general geometric progression may be defined recursively by: 

a1 = a and ak+1 = rak for k ≥ 

1 where the solution is an+1 = arn. 

LINEAR RECURRENCE RELATIONS WITH CONSTANT COEFFICIENTS 

A recurrence relation of order k is a function of the form 

an = α(an−1,an−2,..., an−k , n) 

that is, where the nth term an of a sequence is a function of the preceding k terms an 1, an 2 , . . . ,  an k (and possibly 

n). In particular, a linear kth-order recurrence relation with constant coefficients is a recurrence relation of the 
form 

an = C1an−1 + C2an−2 + · · ·  + Ckan−k + f (n) 

where C1, C2 , . . . ,  Ck are constants with Ck 0, and f (n) is a function of n. The meanings of the names linear 
and constant coefficients follow: 

 

Linear: There are no powers or products of the aj ’s. 

Constant coefficients: The C1C2,... ,Ck are constants (do not depend on n). 

If f (n) = 0, then the relation is also said to be homogeneous. 

Clearly, we can uniquely solve for an if we know the values of an 1, an 2 , . . . ,  an k . Accordingly, by 

mathematical induction, there is a unique sequence satisfying the recurrence relation if we are given initial values 
for the first k elements of the sequence. 
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EXAMPLE  Consider each of the following recurrence relations. 

(a)  an  = 5an−1 − 4an−2 + n2 

This is a second-order recurrence relation with constant coefficients. It is nonhomogeneous because of the n2. 

Suppose we are given the initial conditions a1 1, a2 2. Then we can find sequentially the next few  elements 

of the sequence: 

a3 = 5(2) − 4(1) + 32 = 15, a4 = 5(15) − 4(2) + 42 = 83 

(b) an = 2an−1an−2 + n2 

The product an   1an   2  means the recurrence relation is not linear. Given initial conditions a1     1, a2     2, we 
can still find the next few elements of the sequence: 

a3 = 2(2)(1) + 32 = 13, a4 = 2(13)(2) + 42 = 68 

(c) an = nan−1 + 3an−2 

This is a homogeneous linear second-order recurrence relation but it does not have constant coefficients 

because the coefficient of an 1 is n, not a constant. Given initial conditions a1 1, a2 2, the next few  elements 

of the sequence follow: 

a3  = 3(2) + 3(1) = 9, a4  = 4(9) + 3(2) = 42 

(d) an = 2an−1 + 5an−2 − 6an−3 

This is a homogeneous linear third-order recurrence relation with constant coefficients. Thus we need three, 
not two, initial conditions to yield a unique solution of the recurrence relation. Suppose we are given the 

initial conditions a1 = 1, a2 = 2, a3 = 1. Then, the next few elements of the sequence follow: 

a4 = 2(1) + 5(2) − 6(1) = 6, a5 = 2(2) + 5(1) − 6(6) = −37 

a6 = 2(1) + 5(6) − 6(−37) = 254 

This chapter will investigate the solutions of homogeneous linear recurrence relations with constant coeffi- 

cients. The theory of nonhomogeneous recurrence relations and recurrence relations without constant coefficients 

lies beyond the scope of this text. 

For computational convenience, most of our sequences will begin with a rather than a. The theory is not 

affected at all. 

 

 

6.7. Consider the second-order homogeneous recurrence relation an = an−1 + 2an−2 with initial conditions 

a0 = 2, a1 = 7, 

(a) Find the next three terms of the sequence. 

(b) Find the general solution. 

(c) Find the unique solution with the given initial conditions. 

(a) Each term is the sum of the preceding term plus twice its second preceding term. Thus: 

a2 = 7 + 2(2) = 11, a3 = 11 + 2(7) = 25, a4 = 25 + 2(11) = 46 

(b) First we find the characteristic polynomial O(t) and its roots: 

O(x) = x2 − x − 2 = (x − 2)(x + 1); roots r1 = 2, r2 = −1 

Since the roots are distinct, we use Theorem 6.8 to obtain the general solution: 

a   = c (2n) + c (−1)n 

(c) The unique solution is obtained by finding c1 and c2 using the initial conditions: 

For n = 0, a0  = 2, we get:   c1(2
0) + c2(−1)0  = 2   or   c1  + c2  = 2 

For n = 1, a1 = 7, we get: c1(2
1) + c2(−1)1 = 7 or 2c1 − c2 = 7 

Solving the two equations for c1 and c2 yields c1 = 3 and c2 = 1. The unique solution follows: 

a  = 3(2n) − (−1)n 



 

= 
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6.8. Consider the third-order homogeneous recurrence relation an = 6an−1 − 12an−2 + 8an−3 

(a) Find the general solution. 

(b) Find the solution with initial conditions a0 = 3, a1 = 4, a2 = 12. 

(a) First we find the characteristic polynomial 

O(x) = x3 − 6x2 + 12x − 8 = (x − 2)3 

Then O(x) has only one root r0 2 which has multiplicity 3. Thus the general solution of the recurrence relation 
follows: 

a = c (2n) + c n(2n) + c n2(2n) = (c + c n + c n2)(2n) 

(b) We find the values for c1, c2, and c3  as follows: 

For n = 0, a0 = 3 we get:    c1  = 3 

For n = 1, a1 = 4 we get: 2c1 + 2c2  + 2c3  = 4 

For n = 2, a2 = 12 we get: 4c1 + 8c2 + 16c3 = 12 

Solving the system of three equations in c1, c2, c3 yields the solution 

c1  = 3, c2  = −2, c3  = 1 

Thus the unique solution of the recurrence relation follows: 

an = (3 − 2n + n2)(2n) 

 
 

 
 

Propositional logic 

 

PROPOSITIONS AND COMPOUND STATEMENTS 

A proposition (or statement) is a declarative statement which is true or false, but not both. Consider, for example, 

the following six sentences: 

 

(i) Ice floats in water. (iii) 2 + 2 = 4 (v) Where are you going? 

(ii) China is in Europe.   (iv) 2 + 2 = 5 (vi) Do your homework. 

The first four are propositions, the last two are not. Also, (i) and (iii) are true, but (ii) and (iv) are false. 

 

Compound Propositions 

Many propositions are composite, that is, composed of subpropositions and various connectives discussed 

subsequently. Such composite propositions are called compound propositions. Aproposition is said to be primitive if 

it cannot be broken down into simpler propositions, that is, if it is not composite. 

For example, the above propositions (i) through (iv) are primitive propositions. On the other hand, the following 

two propositions are composite: 

“Roses are red and violets are blue.” and “John is smart or he studies every night.” 

 

 
 

 

BASIC LOGICAL OPERATIONS 

The fundamental property of a compound proposition is that its truth value is completely determined by the 

truth values of its subpropositions together with the way in which they are connected to form the compound 

propositions. The next section studies some of these connectives. 



 

∧ 

∨ 

This section discusses the three basic logical operations of conjunction, disjunction, and negation which 

correspond, respectively, to the English words “and,” “or,” and “not.” 

 
Conjunction, p ∧ q 

Any two propositions can be combined by the word “and” to form a compound proposition called the 

conjunction of the original propositions. Symbolically, 

p ∧ q 

read “p and q,” denotes the conjunction of p and q. Since p q is a proposition it has a truth value, and this truth 

value depends only on the truth values of p and q. Specifically: 

Definition 4.1: If p and q are true, then p ∧ q is true; otherwise p ∧ q is false. 

The truth value of p ∧ q may be defined equivalently by the table in Fig. 4-1(a). Here, the first line is a short way 

of saying that if p is true and q is true, then p ∧ q is true. The second line says that if p is true and q is false, then p 

∧ q is false. And so on. Observe that there are four lines corresponding to the four possible combinations of T and 

F for the two subpropositions p and q. Note that p ∧ q is true only when both p and q are true. 
 

 

 

 

Fig. 4-1 

 

 
 

EXAMPLE 4.1 Consider the following four statements: 

(i) Ice floats in water and 2 + 2 = 4.   (iii)  China is in Europe and 2 + 2 = 4. 

(ii) Ice floats in water and 2 + 2 = 5.   (iv)  China is in Europe and 2 + 2 = 5. 

Only the first statement is true. Each of the others is false since at least one of its substatements is false. 

 
Disjunction, p ∨ q 

Any two propositions can be combined by the word “or” to form a compound proposition called the disjunction 

of the original propositions. Symbolically, 

p ∨ q 

read “p or q,” denotes the disjunction of p and q. The truth value of p q depends only on the truth values of p 

and q as follows. 



 

∨ ∨ 

¬ 

∧ ∨ ¬ 

Definition 4.2: If p and q are false, then p ∨ q is false; otherwise p ∨ q is true. 

The truth value of p q may be defined equivalently by the table in Fig. 4-1(b). Observe that p q is false only in the 

fourth case when both p and q are false. 

 
EXAMPLE 4.2 Consider the following four statements: 

(i) Ice floats in water or 2 + 2 = 4. (iii) China is in Europe or 2 + 2 = 4. 

(ii) Ice floats in water or 2 + 2 = 5. (iv) China is in Europe or 2 + 2 = 5. 

Only the last statement (iv) is false. Each of the others is true since at least one of its sub-statements is true. 

 
Remark: The English word “or” is commonly used in two distinct ways. Sometimes it is used in the sense of “p 

or q or both,” i.e., at least one of the two alternatives occurs, as above, and sometimes it is used in the sense of “p 

or q but not both,” i.e., exactly one of the two alternatives occurs. For example, the sentence “He will go to Harvard 

or to Yale” uses “or” in the latter sense, called the exclusive disjunction. Unless otherwise stated, “or” shall be 

used in the former sense. This discussion points out the precision we gain from our symbolic language: 

p ∨ q is defined by its truth table and always means “p and/or q.” 

Negation, ¬p 

Given any proposition p, another proposition, called the negation of p, can be formed by writing “It is not true 

that .. .” or “It is false that .. .” before p or, if possible, by inserting in p the word “not.” Symbolically, the negation 

of p, read “not p,” is denoted by 

¬p 

The truth value of ¬p depends on the truth value of p as follows: 

Definition 4.3: If p is true, then ¬p is false; and if p is false, then ¬p is true. 

The truth value of p may be defined equivalently by the table in Fig. 4-1(c). Thus the truth value of the 

negation of p is always the opposite of the truth value of p. 

 

 
EXAMPLE 4.3 Consider the following six statements: 

(a1) Ice floats in water.  (a2) It is false that ice floats in water.  (a3) Ice does not float in water. 

(b1)2 + 2 = 5 (b2) It is false that 2 + 2 = 5. (b3)2 + 2 /= 5 

Then (a2) and (a3) are each the negation of (a1); and (b2) and (b3) are each the negation of (b1). Since (a1) is 

true, (a2) and (a3) are false; and since (b1) is false, (b2) and (b3) are true. 

Remark: The logical notation for the connectives “and,” “or,” and “not” is not completely standardized. For 

example, some texts use: 

p & q, p · q or pq for p ∧ q 

J   
p + q for p ∨ q 

p , p̄   or ∼ p for ¬p 

 
4.2 PROPOSITIONS AND TRUTH TABLES 

Let P (p,q,. .  .) denote an expression constructed from logical variables p,q,.. . ,  which take on the value TRUE 

(T) or FALSE (F), and the logical connectives , , and (and others discussed subsequently). Such an expression P 

(p,q,. .  .) will be called a proposition. 



 

∧ ∨ ¬ 

¬ ∧¬ 

¬ ∧ ¬ ¬ ∧ ¬ 

The main property of a proposition P (p,q,. .  .) is that its truth value depends exclusively upon the truth values of 

its variables, that is, the truth value of a proposition is known once the truth value of each of its variables is known. 

A simple concise way to show this relationship is through a truth table. We describe a way to obtain such a truth 

table below. 

Consider, for example, the proposition   (p     q). Figure 4-2(a) indicates how the truth table of    (p      q) is 

constructed. Observe that the first columns of the table are for the variables p,q, . . .  and that there are enough rows 

in the table, to allow for all possible combinations of T and F for these variables. (For 2 variables, as above, 4 rows 

are necessary; for 3 variables, 8 rows are necessary; and, in general, for n variables, 2n rows are required.) There is 

then a column for each “elementary” stage of the construction of the proposition, the truth value at each step being 

determined from the previous stages by the definitions of the connectives  ,  ,   . Finally we obtain the truth value 

of the proposition, which appears in the last column. 

The actual truth table of the proposition   (p   q) is shown in Fig. 4-2(b). It consists precisely of the columns in Fig. 

4-2(a) which appear under the variables and under the proposition; the other columns were merely used in the 

construction of the truth table. 

 

 

 

Fig. 4-2 

 

Remark: In order to avoid an excessive number of parentheses, we sometimes adopt an order of precedence for 

the logical connectives. Specifically, 
 

¬ has precedence over ∧ which has precedence over ∨ 

For example, ¬p ∧ q means (¬p) ∧ q and not ¬(p ∧ q). 

Alternate Method for Constructing a Truth Table 

Another way to construct the truth table for ¬(p ∧ ¬q) follows: 

(a) First we construct the truth table shown in Fig. 4-3. That is, first we list all the variables and the com- 

binations of their truth values. Also there is a final row labeled “step.” Next the proposition is written 

on the top row to the right of its variables with sufficient space so there is a column under each variable 

and under each logical operation in the proposition. Lastly (Step 1), the truth values of the variables are 

entered in the table under the variables in the proposition. 

(b) Now additional truth values are entered into the truth table column by column under each logical operation 

as shown in Fig. 4-4. We also indicate the step in which each column of truth values is entered in the table. 

The truth table of the proposition then consists of the original columns under the variables and the last step, that 

is, the last column is entered into the table. 
 

 

 
 

 

 

     

 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 

  
 

 
 

 
 

 
 

 

 

 
     

 
Fig. 4-3 
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¬ ∧ ¬ ∧ ≡ ¬ ∨ ¬ 

   
 

   

 

Fig. 4-4 

4.3 TAUTOLOGIES AND CONTRADICTIONS 

Some propositions P (p,q,. .  .) contain only T in the last column of their truth tables or, in other words, they are true 

for any truth values of their variables. Such propositions are called tautologies. Analogously, a proposition P (p,q,. .  

.) is called a contradiction if it contains only F in the last column of its truth table or, in other words, if it is false 

for any truth values of its variables. For example, the proposition “p or not p,” that is, p p, is a tautology, and the 

proposition “p and not p,” that is, p p, is a contradiction. This is verified by looking at their truth tables in Fig. 4-

5. (The truth tables have only two rows since each proposition has only the one variable p.) 
 

 

Fig. 4-5 

Note that the negation of a tautology is a contradiction since it is always false, and the negation of a contradiction 

is a tautology since it is always true. 

Now let P (p,q,. .  .) be a tautology, and let P1(p,q,.. .), P2(p,q,.. .), . . .  be any propositions. Since          P (p,q,. . 

.) does not depend upon the particular truth values of its variables p,q, .. . ,  we can substitute P1 for p, P2 for q, . . .  

in the tautology P (p,q,. .  .) and still have a tautology. In other words: 

Theorem 4.1 (Principle of Substitution): If P (p,q,. .  .) is a tautology, then P (P1, P2 , . .  .) is a tautology for 

any propositions P1, P2 , . .  .. 

 
4.4 LOGICAL EQUIVALENCE 

Two  propositions  P (p,q,. .  .) and Q(p,q,. ........... ) are said to be logically equivalent, or simply equivalent or 

equal, denoted by 

P (p, q, .. .) ≡ Q(p, q, . . .) 

if they have identical truth tables. Consider, for example, the truth tables of   (p   q) and   p   q appearing in Fig. 

4-6. Observe that both truth tables are the same, that is, both propositions are false in the first case and true in the 

other three cases. Accordingly, we can write 

¬(p ∧ q) ≡ ¬p ∨ ¬q 

In other words, the propositions are logically equivalent. 

 

Remark: Let p be “Roses are red” and q be “Violets are blue.” Let S be the statement: 

“It is not true that roses are red and violets are blue.” 

Then S can be written in the form (p q). However, as noted above, (p q) p q. Accordingly, S 

has the same meaning as the statement: 

“Roses are not red, or violets are not blue.” 
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Fig. 4-6 

 

4.5 ALGEBRA OF PROPOSITIONS 

Propositions satisfy various laws which are listed in Table 4-1. (In this table, T and F are restricted to the truth 

values “True” and “False,” respectively.) We state this result formally. 

Theorem 4.2: Propositions satisfy the laws of Table 4-1. 

(Observe the similarity between this Table 4-1 and Table 1-1 on sets.) 

 
Table 4-1 Laws of the algebra of propositions 

Idempotent laws: (1a) p ∨ p ≡ p (1b) p ∧ p ≡ p 

Associative laws: (2a) (p ∨ q) ∨ r ≡ p ∨ (q ∨ r) (2b) (p ∧ q) ∧ r ≡ p ∧ (q ∧ r) 

Commutative laws: (3a) p ∨ q ≡ q ∨ p (3b) p ∧ q ≡ q ∧ p 

Distributive laws: (4a) p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) (4b) p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) 

Identity laws: 
(5a) p ∨ F ≡ p 

(6a) p ∨ T  ≡ T 

(5b) p ∧ T ≡ p 

(6b) p ∧ F  ≡ F 

Involution law: (7) ¬¬p ≡ p 

Complement laws: 
(8a) p ∨ ¬p ≡ T 

(9a) ¬T ≡ F 

(8b) p ∧ ¬p ≡ T 

(9b) ¬F ≡ T 

DeMorgan’s laws: (10a) ¬(p ∨ q) ≡ ¬p ∧ ¬q (10b) ¬(p ∧ q) ≡ ¬p ∨ ¬q 

 

 
4.6 CONDITIONAL AND BICONDITIONAL STATEMENTS 

Many statements, particularly in mathematics, are of the form “If p then q.” Such statements are called 

conditional statements and are denoted by 

p → q 

The conditional p q is frequently read “p implies q” or “p only if q.” 

Another common statement is of the form “p if and only if q.” Such statements are called biconditional 

statements and are denoted by 

p ↔ q 

The truth values of p → q and p ↔ q are defined by the tables in Fig. 4-7(a) and (b). Observe that: 

(a) The conditional p → q is false only when the first part p is true and the second part q is false. Accordingly, 

when p is false, the conditional p → q is true regardless of the truth value of q. 

(b) The biconditional p ↔ q is true whenever p and q have the same truth values and false otherwise. 

The truth table of ¬p ∧ q appears in Fig. 4-7(c). Note that the truth table of ¬p ∨ q and p → q are identical, that 

is, they are both false only in the second case. Accordingly, p → q is logically equivalent to ¬p ∨ q; that is, 

p → q ≡ ¬p ∨ q 



 

∨ ¬ → 

€ 

→ 

€ ∧ ∧ → 

In other words, the conditional statement “If p then q” is logically equivalent to the statement “Not p or q” which 

only involves the connectives and and thus was already a part of our language. We may regard p q as an 

abbreviation for an oft-recurring statement. 

 

 

 

Fig. 4-7 

 

 
4.7 ARGUMENTS 

An argument is an assertion that a given set of propositions P1, P2,..., Pn, called premises, yields (has a 

consequence) another proposition Q, called the conclusion. Such an argument is denoted by 

P1, P2, ..., Pn € Q 

The notion of a “logical argument” or “valid argument” is formalized as follows: 

Definition  4.4:  An  argument P1, P2, . . . ,  Pn Q is said to be valid if Q is true whenever all the premises 

P1, P 2 , . . . ,  Pn are true. 

An argument which is not valid is called fallacy. 

 

 
EXAMPLE 4.4 

(a) The following argument is valid: 

p, p → q  € q (Law of Detachment) 

The proof of this rule follows from the truth table in Fig. 4-7(a). Specifically, p and p q are true 

simultaneously only in Case (row) 1, and in this case q is true. 

(b) The following argument is a fallacy: 

p → q, q € p 

For p → q and q are both true in Case (row) 3 in the truth table in Fig. 4-7(a), but in this case p is false. 

Now the propositions P1, P2 , . . . ,  Pn are true simultaneously if and only if the proposition P1 ∧ P2 ∧ . . .  Pn is true. 

Thus the argument P1, P2 , . . . ,  Pn € Q is valid if and only if Q is true whenever P1 ∧ P2 ∧ . . .  ∧ Pn is true or, 

equivalently, if the proposition (P1 ∧ P2 ∧ . . .  ∧ Pn) → Q is a tautology. We state this result formally. 

Theorem 4.3: The argument P1, P2, . . . ,  Pn Q is valid if and only if the proposition (P1  P2 . . .   Pn) Q 

is a tautology. 

We apply this theorem in the next example. 

 

 
EXAMPLE 4.5 A fundamental principle of logical reasoning states: 

“If p implies q and q implies r, then p implies r” 



 

∈ 
∈ 

 
 

Fig. 4-8 

 
That is, the following argument is valid: 

p → q, q → r € p → r (Law of Syllogism) 

This fact is verified by the truth table in Fig. 4-8 which shows that the following proposition is a tautology: 

[(p → q) ∧ (q → r)]→ (p → r) 

Equivalently, the argument is valid since the premises p → q and q → r are true simultaneously only in Cases 

(rows) 1, 5, 7, and 8, and in these cases the conclusion p → r is also true. (Observe that the truth table required 23 

= 8 lines since there are three variables p, q, and r.) 

We now apply the above theory to arguments involving specific statements. We emphasize that the validity of an 

argument does not depend upon the truth values nor the content of the statements appearing in the argument, but 

upon the particular form of the argument. This is illustrated in the following example. 

 

 
EXAMPLE 4.6 Consider the following argument: 

S1 : If a man is a bachelor, he is unhappy. S2 : If a man is unhappy, he dies 
young. 

S : Bachelors die young 

Here the statement S below the line denotes the conclusion of the argument, and the statements S1 and S2 above 

the line denote the premises. We claim that the argument S1, S2 € S is valid. For the argument is of the form 

p → q, q → r € p → r 

where p is “He is a bachelor,” q is “He is unhappy” and r is “He dies young;” and by Example 4.5 this argument 

(Law of Syllogism) is valid. 

 
4.8 PROPOSITIONAL FUNCTIONS, QUANTIFIERS 

Let A be a given set. A propositional function (or an open sentence or condition) defined on A is an expression 

p(x) 

which has the property that p(a) is true or false for each a A. That is, p(x) becomes a statement (with a truth value) 

whenever any element a A is substituted for the variable x. The set A is called the domain of p(x), and the set Tp 

of all elements of A for which p(a) is true is called the truth set of p(x). In other words, 

Tp = {x | x ∈ A, p(x) is true}  or Tp = {x | p(x)} 



 

∈ ∈ ∈ 

∀ ∀ 

Frequently, when A is some set of numbers, the condition p(x) has the form of an equation or inequality involving 

the variable x. 

 

 
EXAMPLE 4.7 Find the truth set for each propositional function p(x) defined on the set N of positive integers. 

(a) Let p(x) be “x + 2 > 7.” Its truth set is {6, 7, 8 , . .  .} consisting of all integers greater than 5. 

(b) Let p(x) be “x + 5 < 3.” Its truth set is the empty set Ø. That is, p(x) is not true for any integer in N. 

(c) Let p(x) be “x + 5 > 1.” Its truth set is N. That is, p(x) is true for every element in N. 

Remark: The above example shows that if p(x) is a propositional function defined on a set A then p(x) could be 

true for all x   A, for some x    A, or for no x    A. The next two subsections discuss quantifiers related to  such 

propositional functions. 

 
Universal Quantifier 

Let p(x) be a propositional function defined on a set A. Consider the expression 

(∀x  ∈ A)p(x)   or ∀x p(x) (4.1) 

which reads “For every x in A, p(x) is a true statement” or, simply, “For all x, p(x).” The symbol 

∀ 

which reads “for all” or “for every” is called the universal quantifier. The statement (4.1) is equivalent to the 

statement 

Tp = {x | x ∈ A, p(x)}= A (4.2) 

that is, that the truth set of p(x) is the entire set A. 

The expression p(x) by itself is an open sentence or condition and therefore has no truth value. However,  x p(x), 

that is p(x) preceded by the quantifier   , does have a truth value which follows from the equivalence   of (4.1) and 

(4.2). Specifically: 
 

 
 

EXAMPLE 4.8 

(a) The proposition (∀n ∈ N)(n + 4 > 3) is true since {n | n + 4 > 3}= {1, 2, 3, .. .}= N. 

(b) The proposition (∀n ∈ N)(n + 2 > 8) is false since {n | n + 2 > 8}= {7, 8, . .  .} /= N. 

(c) The symbol ∀ can be used to define the intersection of an indexed collection {Ai | i ∈ I } of sets Ai as follows: 

∩(Ai | i ∈ I) = {x | ∀i ∈ I, x ∈ Ai } 
 

Existential Quantifier 

Let p(x) be a propositional function defined on a set A. Consider the expression 

 

(∃x ∈ A)p(x)   or ∃x, p(x) (4.3) 

Q1: If {x| x ∈ A, p(x)}= A then ∀x p(x) is true; otherwise, ∀x p(x) is false. 



 

∃ ∃ 

which reads “There exists an x in A such that p(x) is a true statement” or, simply, “For some x, p(x).” The symbol 
 

∃ 

which reads “there exists” or “for some” or “for at least one” is called the existential quantifier. Statement (4.3) is 

equivalent to the statement 

Tp = {x | x ∈ A, p(x)} /= Ø (4.4) 

i.e., that the truth set of p(x) is not empty. Accordingly, x p(x), that is, p(x) preceded by the quantifier , does have 

a truth value. Specifically: 
 

 

 

EXAMPLE 4.9 

 

(a) The proposition (∃n ∈ N)(n + 4 < 7) is true since {n | n + 4 < 7}= {1, 2} /= Ø. 

(b) The proposition (∃n ∈ N)(n + 6 < 4) is false since {n | n + 6 < 4}= Ø. 

(c) The symbol ∃ can be used to define the union of an indexed collection {Ai | i ∈ I } of sets Ai as follows: 

∪(Ai | i ∈ I) = {x |∃ i ∈ I, x |∈ Ai } 

 
4.9 NEGATION OF QUANTIFIED STATEMENTS 

Consider the statement: “All math majors are male.” Its negation reads: 

 

“It is not the case that all math majors are male” or, equivalently, “There exists at least one math 

major who is a female (not male)” 

 

Symbolically, using M to denote the set of math majors, the above can be written as 
 

¬(∀x ∈ M)(x is male) ≡ (∃ x ∈ M) (x is not male) or, when p(x) denotes “x is 

male,” 

¬(∀x ∈ M)p(x) ≡ (∃ x ∈ M)¬p(x)   or ¬∀xp(x) ≡ ∃x¬p(x) 

The above is true for any proposition p(x). That is: 

Theorem 4.4 (DeMorgan): ¬(∀x ∈ A)p(x) ≡ (∃ x ∈ A)¬p(x). 

In other words, the following two statements are equivalent: 

(1) It is not true that, for all a ∈ A, p(a) is true. (2) There exists an a ∈ A such that p(a) is false. 

There is an analogous theorem for the negation of a proposition which contains the existential quantifier. 

Theorem 4.5 (DeMorgan): ¬(∃x ∈ A)p(x) ≡ (∀x ∈ A)¬p(x). 

That is, the following two statements are equivalent: 

(1) It is not true that for some a ∈ A, p(a) is true. (2) For all a ∈ A, p(a) is false. 

Q2: If {x | p(x)} /= Ø then ∃x p(x) is true; otherwise, ∃x p(x) is false. 
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EXAMPLE 4.10 

 
(a) The following statements are negatives of each other: 

 

“For all positive integers n we have n + 2 > 8” “There exists a positive integer n 

such that n + 2 /> 8” 

(b) The following statements are also negatives of each other: 
 

“There exists a (living) person who is 150 years old” “Every living person is not 150 

years old” 

 

Remark: The expression ¬p(x) has the obvious meaning: 

“The statement ¬p(a) is true when p(a) is false, and vice versa” 

Previously, ¬ was used as an operation on statements; here ¬ is used as an operation on propositional functions. 

Similarly, p(x) ∧ q(x), read “p(x) and q(x),” is defined by: 

“The statement p(a) ∧ q(a) is true when p(a) and q(a) are true” Similarly, p(x) ∨ q(x), 

read “p(x) or q(x),” is defined by: 

“The statement p(a) ∨ q(a) is true when p(a) or q(a) is true” Thus in terms of truth sets: 

(i) ¬p(x) is the complement of p(x). 

(ii) p(x) ∧ q(x) is the intersection of p(x) and q(x). 

(iii) p(x) ∨ q(x) is the union of p(x) and q(x). 

One can also show that the laws for propositions also hold for propositional functions. For example, we have 

DeMorgan’s laws: 

¬(p(x) ∧ q(x)) ≡ ¬p(x) ∨ ¬q(x)    and ¬(p(x) ∨ q(x)) ≡ ¬p(x) ∧ ¬q(x) 

 
Counterexample 

Theorem 4.6 tells us that to show that a statement   x, p(x) is false, it is equivalent to show that   x    p(x)  is true 
or, in other words, that there is an element x0 with the property that p(x0) is false. Such an element x0 is called a 

counterexample to the statement ∀x, p(x). 

 
EXAMPLE 4.11 

 
(a) Consider the statement   x R,  x 0. The statement is false since 0 is a counterexample, that is,  0 0 

is not true. 

(b) Consider the statement ∀x ∈ R, x2 ≥ x. The statement is not true since, for example, 1 is a counterexample. 

Specifically, ( 1 )2 ≥ 1 is not true, that is, ( 1 )2 < 1 . 

(c) Consider  the statement   x N, x2 x. This statement is true where N is the set of positive integers. 

In other words, there does not exist a positive integer n for which n2 < n. 



 

= × × 

∀ ∃ ∃ ∀ ¬ 

Propositional Functions with more than One Variable 

A propositional function (of n variables) defined over a product set A = A1 × ··· × An is an expression 

p(x1, x2,..., xn) 

which has the property that p(a1, a2,..., an) is true or false for any n-tuple (a1,... an) in A. For example, 

x + 2y + 3z < 18 

is a propositional function on N3 N N N. Such a propositional function has no truth value. However, we 

do have the following: 

Basic Principle: A propositional function preceded by a quantifier for each variable, for example, 

∀x∃y, p(x, y)   or ∃x ∀y ∃z, p(x, y, z) 

denotes a statement and has a truth value. 

 

 
EXAMPLE 4.12 Let B = {1, 2, 3 , . . . ,  9} and let p(x, y) denote “x + y = 10.” Then p(x, y) is a propositional 

function on A = B2 = B × B. 

(a) The following is a statement since there is a quantifier for each variable: 

∀x∃y, p(x, y), that is, “For every x, there exists a y such that x + y = 10” 

This statement is true. For example, if x = 1, let y = 9; if x = 2, let y = 8, and so on. 

(b) The following is also a statement: 

∃y∀x, p(x, y), that is, “There exists a y such that, for every x, we have x + y = 10” 

No such y exists; hence this statement is false. 

Note that the only difference between (a) and (b) is the order of the quantifiers. Thus a different ordering of the 

quantifiers may yield a different statement. We note that, when translating such quantified statements into English, 

the expression “such that” frequently follows “there exists.” 

 
Negating Quantified Statements with more than One Variable 

Quantified statements with more than one variable may be negated by successively applying Theorems 4.5 and 

4.6. Thus each  is changed to  and each  is changed to  as the negation symbol  passes through the statement from 

left to right. For example, 

¬[∀x∃y∃z, p(x, y, z)] ≡ ∃x¬[∃y∃z, p(x, y, z)] ≡ ¬∃z∀y[∃z, p(x, y, z) 

≡ ∃x∀y∀z, ¬p(x, y, z) 

Naturally, we do not put in all the steps when negating such quantified statements. 

 

 
EXAMPLE 4.13 

(a) Consider the quantified statement: 

“Every student has at least one course where the lecturer is a teaching assistant.” Its negation is the 

statement: 

“There is a student such that in every course the lecturer is not a teaching assistant.” 



 

∧ ∨ ∼ 

¬ ∧ ¬ ∨ ¬ 
¬ ∧ ¬ ∨ ¬ 

(b) The formal definition that L is the limit of a sequence a1, a2 , . . .  follows: 

∀ ∈ > 0, ∃ n0 ∈ N, ∀n > n0 we have | an − L| < ∈ 

Thus L is not the limit of the sequence a1, a2,... when: 

∃ ∈ > 0, ∀n0 ∈ N, ∃ n > n0 such that | an − L| ≥∈  

 

Solved Problems 

 
PROPOSITIONS AND TRUTH TABLES 

1.Let p be “It is cold” and let q be “It is raining”. Give a simple verbal sentence which describes each of the 

following statements: (a) ¬p; (b) p ∧ q; (c) p ∨ q; (d) q ∨ ¬p. 

In each case, translate    ,  , and to read “and,” “or,” and “It is false that” or “not,” respectively, and then simplify 

the English sentence. 
 

(a) It is not cold. (c) It is cold or it is raining. 

(b) It is cold and raining. (d) It is raining or it is not cold. 

2.Find the truth table of ¬p ∧ q.construct the truth table of ¬p ∧ q as in Fig. 4-9(a). 
 

 

 

Fig. 4-9 

 

4.2. Verify that the proposition p ∨ ¬(p ∧ q) is a tautology. 

Construct the truth table of p ∨ ¬(p ∧ q) as shown in Fig. 4-9(b). Since the truth value of p ∨ ¬(p ∧ q) is T for all values of 
p and q, the proposition is a tautology. 

4.3. Show that the propositions ¬(p ∧ q) and ¬p ∨ ¬q are logically equivalent. 

Construct the truth tables for (p q) and p  q  as in Fig. 4-10. Since the truth tables are the same (both  propositions are false in 

the first case and true in the other three cases), the propositions  (p  q) and  p  q  are   logically equivalent and we can write 

¬(p ∧ q) ≡ ¬p ∨ ¬q. 

 
 

 

 

Fig. 4-10 



 

4.4. Use the laws in Table 4-1 to show that ¬(p ∧ q) ∨ (¬p ∧ q) ≡ ¬p. 

Statement Reason 

(1) ¬(p ∨ q) ∨ (¬p ∧ q) ≡ (¬p ∧ ¬q) ∨ (¬p ∧ q) DeMorgan’s law 

(2) ≡ ¬p ∧ (¬q ∨ q) Distributive law 

(3) ≡ ¬p ∧ T Complement law 

(4) ≡ ¬p Identity law 

 

CONDITIONAL STATEMENTS 

4.5. Rewrite the following statements without using the conditional: 
 

(a) If it is cold, he wears a hat. 

(b) If productivity increases, then wages rise. 

Recall that “If p then q” is equivalent to “Not p or q;” that is, p → q ≡ ¬p ∨ q. Hence, 

(a) It is not cold or he wears a hat. 

(b) Productivity does not increase or wages rise. 

 

4.6. Consider the conditional proposition p → q. The simple propositions q → p, ¬p → ¬q and ¬q → ¬p 

are called, respectively, the converse, inverse, and contrapositive of the conditional p → q. Which if any 

of these propositions are logically equivalent to p → q? 

Construct their truth tables as in Fig. 4-11. Only the contrapositive ¬q → ¬p is logically equivalent to the original conditional 

proposition p → q. 
 

 

Fig. 4-11 

 
4.7. Determine the contrapositive of each statement: 

 

(a) If Erik is a poet, then he is poor. 

(b) Only if Marc studies will he pass the test. 

(a) The contrapositive of p → q is ¬q → ¬p. Hence the contrapositive follows: 

If Erik is not poor, then he is not a poet. 

(b) The statement is equivalent to: “If Marc passes the test, then he studied.” Thus its contrapositive is: 

If Marc does not study, then he will not pass the test. 

 

4.8. Write the negation of each statement as simply as possible: 
 

(a) If she works, she will earn money. 

(b) He swims if and only if the water is warm. 

(c) If it snows, then they do not drive the car. 

(a) Note that ¬(p → q) ≡ p ∧ ¬q; hence the negation of the statement is: 

She works or she will not earn money. 



 

(b) Note that ¬(p ↔ q) ≡ p ↔ ¬q ≡ ¬p ↔ q ; hence the negation of the statement is either of the following: 

He swims if and only if the water is not warm. 

He does not swim if and only if the water is warm. 

(c) Note that ¬(p → ¬q) ≡ p ∧ ¬¬q ≡ p ∧ q. Hence the negation of the statement is: 

It snows and they drive the car. 

 

ARGUMENTS 

4.9. Show that the following argument is a fallacy: p → q, ¬ p € ¬q. 

Construct the truth table for [(p → q)∧¬p]→ ¬q as in Fig. 4-12. Since the proposition [(p → q)∧¬p]→ ¬q is not a 

tautology, the argument is a fallacy. Equivalently, the argument is a fallacy since in the third line of the truth table p → q and 

¬p are true but ¬q is false. 
 

 

Fig. 4-12 

 

4.10. Determine the validity of the following argument: p → q, ¬ p € ¬p. 

Construct the truth table for [(p → q)∧¬q]→ ¬p as in Fig. 4-13. Since the proposition [(p → q)∧¬q]→ ¬p 

is a tautology, the argument is valid. 

 
 

 
 

 

 

         

 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
Fig. 4-13 

 

4.11. Prove the following argument is valid: p → ¬q, r → q, r € ¬p. 

Construct the truth table of the premises and conclusions as in Fig. 4-14(a). Now, p → ¬q, r → q, and r are true 

simultaneously only in the fifth row of the table, where ¬p is also true. Hence the argument is valid. 

 

 

 

Fig. 4-14 



 

→ ¬ € ¬ 

0 

= + 

4.12. Determine the validity of the following argument: 

If 7 is less than 4, then 7 is not a prime number. 7 is not less than 4. 

7 is a prime number. 

First translate the argument into symbolic form. Let p be “7 is less than 4” and q be “7 is a prime number.” Then the argument 

is of the form 

p → ¬q,  ¬q € q 

Now, we construct a truth table as shown in Fig. 4-14(b). The above argument is shown to be a fallacy since, in the fourth line 

of the truth table, the premises p → ¬q and ¬p are true, but the conclusion q is false. 

Remark: The fact that the conclusion of the argument happens to be a true statement is irrelevant to the fact that the argument 

presented is a fallacy. 

4.13. Test the validity of the following argument: 

If two sides of a triangle are equal, then the opposite angles are equal. Two sides of a 

triangle are not equal. 

The opposite angles are not equal. 

First translate the argument into the symbolic  form p q,   p q, where p is “Two sides of a triangle are 

equal” and q is “The opposite angles are equal.” By Problem 4.10, this argument is a fallacy. 

Remark: Although the conclusion does follow from the second premise and axioms of Euclidean geometry, the above 

argument does not constitute such a proof since the argument is a fallacy. 

 
QUANTIFIERS AND PROPOSITIONAL FUNCTIONS 

4.14. Let A = {1, 2, 3, 4, 5}. Determine the truth value of each of the following statements: 

(a) (∃x ∈ A)(x + 3 = 10) (c) (∃x ∈ A)(x + 3 < 5) 

(b) (∀x ∈ A)(x + 3 < 10)   (d) (∀x ∈ A)(x + 3 ≤ 7) 

(a) False. For no number in A is a solution to x + 3 = 10. 

(b) True. For every number in A satisfies x + 3 < 10. 

(c) True. For if x0 = 1, then x0 + 3 < 5, i.e., 1 is a solution. 

(d) False. For if x0 5, then x0 3 is not less than or equal 7. In other words, 5 is not a solution to the given 
condition. 

 

4.15. Determine the truth value of each of the following statements where U = {1, 2, 3} is the universal set: 
(a) ∃x∀y, x2 < y + 1; (b) ∀x∃y, x2 + y2 < 12; (c) ∀x∀y, x2 + y2 < 12. 

(a) True. For if x = 1, then 1, 2, and 3 are all solutions to 1 < y + 1. 

(b) True. For each x0, let y = 1; then x2 + 1 < 12 is a true statement. 

(c) False. For if x0 = 2 and y0 = 3, then x2 + y2 < 12 is not a true statement. 
0 0 

4.16. Negate each of the following statements: 
 

(a) ∃x ∀y, p(x, y); (b) ∃x ∀y, p(x, y); (c) ∃y ∃x ∀z, p(x, y, z). 

Use ¬∀x p(x) ≡ ∃x¬p(x) and ¬∃x p(x) ≡ ∀x¬p(x): (a) 

¬(∃x∀y, p(x, y)) ≡ ∀x∃y¬p(x, y) 

(b) ¬(∀x∀y, p(x, y)) ≡ ∃x∃y¬p(x, y) 

(c)   ¬(∃y ∃x ∀z,  p(x, y, z)) ≡ ∀y ∀x ∃z¬p(x, y, z) 



 

= {−  −   − } 
+ 4.17. Let p(x) denote the sentence “x 2 > 5.” State whether or not p(x) is a propositional function on each 

of the following sets: (a) N, the set of positive integers; (b) M 1, 2, 3, . . . ; 

(c) C, the set of complex numbers. 
 

(a) Yes. 

(b) Although p(x) is false for every element in M, p(x) is still a propositional function on M. 

(c) No. Note that 2i + 2 > 5 does not have any meaning. In other words, inequalities are not defined for complex 
numbers. 

 

4.18. Negate each of the following statements: (a) All students live in the dormitories. (b) All mathematics 

majors are males. (c) Some students are 25 years old or older. 

Use Theorem 4.4 to negate the quantifiers. 

 
(a) At least one student does not live in the dormitories. (Some students do not live in the dormitories.) 

(b) At least one mathematics major is female. (Some mathematics majors are female.) 

(c) None of the students is 25 years old or older. (All the students are under 25.) 

 

 

 

 
 



 



   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
    

    

    

    

 

 



SUBJECT:DISCRETE MATHEMATICS     Code:CSE 208-C 

B.Tech CSE 4th SEM 

UNIT : Algebraic Structure & Morphism 

Definition: 

1.Algebraic Structure: A system consists of a non empty set and one or more operstion on that set is 

called Algebraic system  or Algebraic Structure. 

2. Binary Operations: A non empty set A such that f: AXA→A is called a binary operation on A.  

                           If a,b ϵA & * is a binary operation on A , then it is denoted by a*b . 

   For Example i)The operation of addition  on the set of Natural Numbers. 

(ii)The operation of substraction on the set of integers is a binary operation but not with the set of 

Natural numbers. Because 

Table of Operation: Let A ={a1,a2,a3……….an} be a non empty set. ‘*’  be a binary operation on A 

.Then 

* a1 a2  an 

a1 a1*a1   a1*an 

a2  a2*a2   

     

an an*a1   an*an 

  

Example: 

Consider A={1,2,3} and a binary operation * on A is defined as a*b= 2a + 2b . Represents its table 

* 1 2 3 

1 4 6 8 

2 6 8 10 

3 8 10 12 

  

Viz: 1*1=2.1+2.1=4; 1*2=2.1+2.2=6;  etc… 

Properties of Binary Operations 

Let A be a non empty set with a binary operation * . Then 

(1) Closure property: If a,b ϵA , then a*bϵA 

Viz:The operation of addition on the set of integers is a closed operation. 

 

(2) Associative Property:  If for every a,b,cϵA , WE HAVE  



(a*b)*c=a*(b*c) 

Example: Let * be a binary operation on set  of rational number Q defined as 

a*b=a+b-ab 

Then * is Associative because 

If Ɐ a,b,c ϵQ  

(a*b)*c =  (a+b-ab)*c = (a+b-ab)+c –(a+b-ab)c =a+b-ab+c-ac-ab+abc=a+b+c-ab-bc-ca+abc 

a*(b*c)=a*(b+c-bc)=a+b+c-bc-a(b+c-bc)=a+b+c-ab-bc-ca+abc 

Therefore,(a*b)*c=a*(b*c) 

(3) Commutative Property: If for all a,bϵA , a*b=b*a 

Example: 

* on set Q ,set of Rational numbers defined as a*b=a2 + b2 ,Ɐ a,b ϵ Q 

Is commutative, because  

Ɐ a,b ϵ Q , a*b= a2 + b2 = b2 + a2 = b* a 

(4) Identity Property : If there exists an element e ϵ A such that 

a * e =e *a  Ɐa ϵ A 

(Right Identity) = (Left Identity) 

                          Theorem : Prove that  e1 = e2     , where e1 amd e2 are the R.H.I and L.H.I  of binary operation *. 

                                Proof: Since e1 is the right identity 

                                             Therefore, e1* e2 = e1 

                                  Again since, e2 is the left identity 

                                 Therefore , e1=e2, Hence proved. 

                   (5) Inverse Property :    The binary operation * has the inverse property if for each a ϵ A                                                              

Э   an element b ϵ A such that  a * b =b * a = e……   e is the identity in * 

                          Then b is said to be invers of a. 

                  (6) Idempotent : The operation * has the Idempotent Type equation here.Property if for every aϵ A , 

we have 

                              a*a=a , Ɐ a ϵ A 



                 (7) Distributivity : Let two binaryboperations * and + on A , then * distributes over + ,if for every a, b ,c ϵ 

A  

                      We have 

                                       a *(b + c) = (a *b) +(a *c) [ Left Distribution] 

                                       (b + c ) * a = (b* c) +(c*a)   [ Right Distribution] 

 

             (8) Cancellation : The operation * has the cancellation Property , if for every a, b, c ϵ A we have 

                                               a * b =a * c  implies b=c (Left cancellation) 

                                               b * a = c * a implies b=c ( Right cancellation)   

            (9) Semi group :  An Algebraic Structure (A,*) is said to be a semi group if it satisfies the following 

properties 

   (i) The operation * is closed on set A. 

                                                  (ii) The operation * is an associative operation.       

                                Example: If A= { 1,3,5,7,9………} set of all  odd positive integers  and ‘*’ is a ordinary 

multiplication 

  Then (A,*) is a semi group. 

            (10) Monoid : An algebraic structure (A ,o) , where ‘o’ is a binary operation on A is said to be Monoid if it 

satisfies the following properties 

                                               (i) The operation ‘o’ is a closed operation on set A. 

             (ii) The operation ‘o’ is an associative operation. 

                                              (iii) There exists an identity element w.r.t the operation ‘o’. 

                                         Example: An algebraic structure (N,+) , where  N is the set of Natural Numbers with  

addition as a binary operation is a Monoid. 

        (11) Group : An Algebraic Structure (G,*) ,where ‘*’ is a binary operation on G. Then the system (G,*) is said 

to be a group if it satisfies the following properties , 

                (i) The operation ‘*’ is a closed operation. 

                (ii) the operation ‘*’ is an associative operation. 

              (iii) There exists an identity element w.r.t the operation ‘*’. 

              (iv) For every aϵ G there exits an element a-1 ϵ G such that  



                                        a-1 * a= a* a-1 =e ,e is the identity element in G. 

 

                 Example : The algebraic structure (I,+)  is a group ,where I is the set of integers and “+” is the operation 

addition. Here 0 is the identity element and for every a ϵ I , -a ϵ I is the inverse . 

        (12) Sub group:  Let (G,*) be a group and let S ⊆ G ,Then (S,*) is called a subgroup if it satisfies the following 

conditions : 

                  (ii) The operation * is an associative operation. 

                  (iii) If e ϵ G , identity element in G , then e ϵ  S . 

                   (iv) For every a ϵ S , a-1 ϵ S . 

 

               Example : (I,+) is a group ,where I is the set of integers ,the  the algebraic structure (H,+)  , where H is the 

set of even integers is the subgroup of I. 

      (13) Abelian Group : A Group ( G, *) is said to be Abelian Group if 

                                               a * b = b*a ,  Ɐ a,b ϵ G. 

 

      Example: Consider an algebraic system (G,*) where G is the set of all non zero real numbers and * is a binary 

operation defined by 

                                                              a * b =
𝑎𝑏

4
   Show that (G,*) is an abelian group. 

Proof: (i) Closure Property : The set G is closed under the operation * ,Since a*b=(ab/4) is a real number ,hence 

belongs to G. 

           (ii) Associative Property : Let a,b,c ∈ 𝐺  then 

                            (a*b)*c  (ab/4)*c= (ab)c/16==abc/16 

                            a *(b*c)= a*(bc/4)=a(bc)/16=abc/16 

               Hence (a*b)*c= a*(b*c) 

       (iii) Identity: let e be a positive real Number then e a=a i.e ea/4=a i.e e=4 

Similarly. a * e=4 I,ae e=4 

 4 is the identity element in G. 

(iv) Inverse : Let a ∈ 𝐺   , If a-1∈ G, then a * a-1 =4 



+ + + 
× + 

× × 

= { } 

∼ 

        Hence aa-1/4 = 4  or a-1 = 16/a 

Similarly,, 

               a-1 * a= 4 or a-1 = 16/a 

Thus, the inverse of the element a in G  

 Is 16/a 

(V) The * in G is commutative   

Since a*b=ab/4=ba/4= b*a 

Therefore, the system (G,*) is an abelian Group. 

                                                          Hence Proved 

Subsemigroups 

Let A be a nonempty subset of a semigroup S. Then A is called a subsemigroup of S if A itself is a 

semigroup with respect to the operation on S. Since the elements of A are also elements of S, the 

Associative Law automatically holds for the elements of A. Therefore, A is a subsemigroup of S if and 

only if A is closed under the operation on S. 

EXAMPLE  

 

(a) Let A and B  denote,  respectively,  the set of even and odd positive integers.  Then (A, ) and 

(B,   ) are subsemigroups of (N,  ) 

since A and B are closed under multiplication.  On the other hand, (A,  ) is a 

subsemigroup of (N, ) since A is closed under addition, but (B, ) is not a 

subsemigroup of (N, ) since B is not closed under addition. 
 

(b) Let F be the free semigroup on the set A a, b . Let H consist of all even words, that is, words 

with even length. The concatenation of two such words is also even. Thus H is a subsemigroup 

of F . 
 

 

 

Congruence Relations and Quotient Structures 

Let S be a semigroup and let ∼ be an equivalence relation on S. Recall that the equivalence relation 

∼ induces a partition of S into equivalence classes. Also, [a] denotes the equivalence class containing 

the element a ∈ S, and that the collection of equivalence classes is denoted by S/∼. 

Suppose that the equivalence relation ∼ on S has the following property: 

 

 

Then is called a congruence relation on S. Furthermore, we can now define an operation on the 

equivalence classes by 

[a] ∗ [b] = [a ∗ b] or, simply, [a] [b] = [ab] 

If a ∼ aJ and b ∼ bJ,  then ab ∼ aJbJ. 



∗ ∗ → 

c d 

× 

= | | = − 

Furthermore, this operation on S/∼ is associative; hence S/∼ is a semigroup. We state this result 

formally. 

Theorem : Let ∼ be a congruence relation on a semigroup S. Then S/∼, the equivalence classes 

under ∼, form a semigroup under the operation [a] [b] = [ab]. 

This semigroup S/∼ is called the quotient of S by ∼. 

Homomorphism of Semigroups 

Consider two semigroups (S,   ) and (SJ,   J).  A function f :  S SJ is called a semigroup 

homomorphism 

or, simply, a homomorphism if 

f (a ∗ b) = f (a) ∗J f (b)    or,  simply    f (ab) = f (a)f (b) 

Suppose f  is also one-to-one and onto. Then f  is called an isomorphism between S and SJ, and S and 

SJ are said to be isomorphic semigroups, written S ∼= S. 

 

 

EXAMPLE  

(a) Let M  be the set of all 2 × 2 matrices with integer entries.  The determinant of any matrix A = 

Σ 
a b 

Σ

 

is denoted and defined by det(A) A ad bc. One proves in Linear Algebra that the determinant 

is a 

multiplicative function, that is, for any matrices A and B, 

 

det(AB) = det(A) · det(B) 

Thus the determinant function is a semigroup homomorphism on (M, ), the matrices under 

matrix multi- plication. On the other hand, the determinant function is not additive, that is, for 

some matrices, 

det(A + B) /= det(A) + det(B) 

Thus the determinant function is not a semigroup homomorphism on (M, 

+). 

(b) Figure B-2(a) gives the addition table for Z4, the integers modulo 4 under addition; and Fig. B-
2(b) gives the multiplication table for S = {1, 3, 7, 9} in Z10. (We note that S is a reduced 
residue system for the integers Z modulo 10.) Let f : Z4 → S be defined by 

f (0) = 1, f (1) = 3, f (2) = 9, f (3) = 7 

 



→ 

 

 

 

Fig. B-2 

 

One can show that f is a homomorphism. Since f is also one-to-one and onto, f is an 

isomorphism. Thus 

Z4 and S are isomorphic semigroups. 

(c) Let ∼ be a congruence relation on a semigroup S. Let φ: S → S/ ∼ be the natural mapping 
from S into the factor semigroup S/∼ defined by 

φ(a) = [a] 

That is, each element a in S is assigned its equivalence class [a]. Then φ is a homomorphism since 

 

φ(ab) = [ab] = [a] [b] = φ(a)φ(b) 

Fundamental Theorem of Semigroup Homomorphisms 

Recall that the image of a function f : S SJ, written f (S) of Im f , consists of the images of the 

elements of S under f . Namely: 

Im f  = {b ∈ S J | there exists a ∈ S for which f (a) = b} 

The following theorem (proved in Problem B.5) is fundamental to semigroup theory. 

Theorem  :  Let  f  :  S   →  SJ  be  a  semigroup  homomorphism.    Let  a  ∼ b  if  f (a)   =  f (b).    

Then: 

(i) ∼ is a congruence relation on S. (ii) S/∼ is isomorphic to f(S). 
 

EXAMPLE  

(a) Let F be the free semigroup on A = {a, b}. The function f : F → Z defined by 

f(u) = l(u) 

is a homomorphism. Note f(F) = N. Thus F /∼ is isomorphic to N. 

(b) Let M be the set of 2 × 2 matrices with integer entries. Consider the determinant function det: 
M → Z. We note that the image of det is Z. By Theorem B.4, M/∼ is isomorphic to Z. 

Semigroup Products 

Let (S1, ∗1) and (S2, ∗2) be semigroups. We form a new semigroup S = S1 ⊗ S2, called the 

direct product of S1 and S2, as follows. 



1 2 3 3 2 1 2 3 1 

j j j j 

Σ

 

(1) The elements of S come from S1 × S2, that is, are ordered pairs (a, b) where a ∈ S1 and b ∈ S2 

(2) The operation ∗ in S is defined componentwise, that is, 

(a, b) ∗ (aJ, bJ) = (a ∗1 aJ,  b ∗2 bJ)    or simply    (a, b)(aJ, bJ) = (aaJ, bbJ) 

One can easily show (Problem B.3) that the above operation is associative. Symmetric Group Sn 

A one-to-one mapping σ of the set {1, 2, …, n} onto itself is called a permutation. Such a 

permutation may be denoted as follows where ji = σ(i): 

 

1 2 3 ···  n 

1 2 3 ···  n 

 

The set of all such permutations is denoted by Sn, and there are n! = n(n − 1) · ... · 2 · 1 of 

them. The composition and inverses of permutations in Sn belong to Sn, and the identity function ε 

belongs to Sn. Thus Sn forms a group under composition of functions called the symmetric group of 

degree n. 

The symmetric group S3 has 3!= 6 elements as follows: 

ε = 
. 

1   2 3  
Σ 

, σ2 = 
. 

1   2 3  
Σ 

, φ1 = 
. 

1   2   3 
Σ

 

 

σ1 = 

.

 
3 

Σ 

, σ3 = 

. 

1
 

3 
Σ 

, φ2  = 
. 

1 
Σ 

 

The multiplication table of S3 appears in Fig. B-4. 

.

σ  = 

1 2   2   2 3 

1 3 2 2 1 3 3 1 2 

 



: → 

MAP(A), PERM(A), and AUT(A) 

Let A be a nonempty set. The collection MAP(A) of all functions (mappings) f  A  A is a 

semigroup  under composition of functions; it is not a group since some functions may have no 

inverses. However, the subsemigroup PERM(A) of all one-to-one correspondences of A with itself 

(called permutations of A) is a group under composition of functions. 

Furthermore, suppose A contains some type of geometric or algebraic structure; for example, A 

may be the set of vertices of a graph, or A may be an ordered set or a semigroup. Then the set AUT(A) 

of all isomorphisms of A with itself (called automorphisms of A) is also a group under compositions 

of functions. 

 

B.1 SUBGROUPS, NORMAL SUBGROUPS, AND HOMOMORPHISMS 

Let H be a subset of a group G. Then H is called a subgroup of G if H itself is a group under the 

operation of G. Simple criteria to determine subgroups follow. 

Proposition B.5: A subset H of a group G is a subgroup of G if: 

(i) The identity element e ∈ H . 
(ii) H is closed under the operation of G, i.e. if a, b ∈ H , then ab ∈ H . 

(iii) H is closed under inverses, that is, if a ∈ H , then a−1 ∈ H . 

Every group G has the subgroups {e} and G itself. Any other subgroup of G is called a nontrivial 

subgroup. 

 

Cosets 

Suppose H is a subgroup of G and a ∈ G. Then the set 

Ha = {ha | h ∈ H } 

is called a right coset of H . (Analogously, aH is called a left coset of H .) We have the following 

important results (proved in Problems B.13 and B.15). 

Theorem B.6: Let H be a subgroup of a group G. Then the right cosets Ha form a partition of G. 

Theorem B.7 (Lagrange):  Let H be a subgroup of a finite group G. Then the order of H divides the 

order of G. 

The number of right cosets of H in G, called the index of H  in G, is equal to the number of left 
cosets of H 

in G; and both numbers are equal to |G| divided by |H |. 
 

Normal Subgroups 

The following definition applies. 

Definition B.2: A subgroup H of G is a normal subgroup if a−1Ha ⊆ H , for every a  ∈ G, or,  
equivalently, if aH = Ha, i.e., if the right and left cosets coincide. 

Note that every subgroup of an abelian group is normal. 

The importance of normal subgroups comes from the following result (proved in Problem B.17). 

Theorem B.8: Let H be a normal subgroup of a group G. Then the cosets of H form a group under 

coset multiplication: 

(aH)(bH) = abH 



+ 

This group is called the quotient group and is denoted by G/H. 

Suppose the operation in G is addition or, in other words, G is written additively. Then the cosets 

of a subgroup H of G are of the form a H . Moreover, if H is a normal subgroup of G, then the cosets 

form a group under coset addition, that is, 

(a + H) + (b + H) = (a + b) + H 



× 

∈ 

EXAMPLE B.11 
 

(a) Consider the permutation group S3 of degree 3 which is investigated above. The set H = {ε, σ1} 

is a subgroup of S3. Its right and left cosets follow: 

Right Cosets Left Cosets 

H  = {ε, σ1} H = {ε, σ1} 

H φ1  = {φ1, σ2} φ1H = {φ1, 
σ3} Hφ2  = {φ2, σ3} φ2H 
= {φ2, σ2} 

Observe that the right cosets and the left cosets are distinct; hence H is not a normal subgroup of 

S3. 

(b) Consider the group G of 2 2 matrices with rational entries and nonzero determinants. (See 

Example A.10.) Let H be the subset of G consisting of matrices whose upper-right entry is zero; 

that is, matrices of the form 
 

a 0 

c d 

 

Then H is a subgroup of G since H is closed under multiplication and inverses and I H . 

However, H is not a normal subgroup since, for example, the following product does not belong 

to H : 

Σ 
1 2 

Σ−1 Σ 
1 0 

ΣΣ 
1 2 

Σ 

   
Σ 

−1 −4 
Σ
 

 

On the other hand, let K be the subset of G consisting of matrices with determinant 1. One 

can show that K is also a subgroup of G. Moreover, for any matrix X in G and any matrix A in K, 

we have 

 

det(X−1AX) = 1 

Hence X−1AX belongs to K,  so K is a normal subgroup of G. 

 

Integers Modulo m 

Consider the group Z of integers under addition. Let H denote the multiples of 5, that is, 

 

H = {..., −10, −5, 0, 5, 10,.. .} 

Then H is a subgroup (necessarily normal) of Z. The cosets of H in Z appear in Fig. B-5(a). By the 

above Theorem B.8, Z/H = {0, 1, 2, 3, 4} is a group under coset addition; its addition table appears in 
Fig. B-5(b). 

This quotient group Z/H is referred to as the integers modulo 5 and it is frequently denoted by Z5. 

Analogously, for any positive integer n, there exists the quotient group Zn called the integers 

modulo n. 
 

1 3 1 1 1 3 

Σ 

= 

1 3 

Σ 



 

 

 

 

 

 

 

 

 

Fig. B-5 



. . . . 

∪ 

. 

Cyclic Subgroups 

Let G be any group and let a be any element of G. As usual, we define a0 = e and an+1 = an · a. 

Clearly, 

aman = am+n and (am)n = amn, for any integers m and n. Let S denote the set of all the powers 
of a; that is 

S = {· · · , a−3,  a−2,  a−1,  e,  a,  a2,  a3,  · · · }  

Then S is a subgroup of G called the cyclic group generated by a. We denote this group by gp(a). 

Furthermore, suppose that the powers of a are not distinct, say ar = as with, say, r > s. Then ar−s 

= e where r, s > 0. The smallest positive integer m such that am = e is called the order of a and it 

will be denoted by |a|. If |a| = m, then the cyclic subgroup gp(a) has m elements as follows: 

gp(a) = {e, a, a2, a3,..., am−1} 

Consider, for example, the element φ1 in the symmetric group S3 discussed above. Then: 

φ1
1 = φ1, φ1

2 = φ2, φ1
3  = φ2 · φ1  = e 

Hence φ1  = 3 and gp(φ1)  = {e,  φ1,  φ2}.  Observe that  φ1  divides the order of S3.  This is true in 

general; that is, for any element a in a group G, |a| equals the order of gp(a) and hence |a| divides 

|G| by Lagrange’s Theorem B.7. We also remark that a group G is said to be cyclic if it has an element 

a such that G = gp(a). 

Generating Sets, Generators 

Consider any subset A of a group G. Let gp(A) denote the set of all elements x in G such that x is 

equal to a product of elements where each element comes from the set A A−1 (where A−1 denotes the 
set of inverses of elements of A). That is, 

gp(A) = {x ∈ G x = b1b2 ... bm where each bi ∈ A ∪ A−1} 

Then gp(A) is a subgroup of G with generating set A. In particular, A is said to generate the group G if G 

= gp(A), that is, if every g in G is a product of elements from A ∪ A−1. We say A is a minimal set of 
generators of G if A generates G and if no set with fewer elements than A generates G. For example, 
the permutations a = σ1 and b = φ1 form a minimal set of generators of the symmetric group S3 
(Fig. B-4). Specifically, 

e = a2, σ1 = a, σ2 = ab, σ3 = ab2, φ1 = b, φ2 = b2 

and S3 is not cyclic so it cannot be generated by one element. 

 

Homomorphisms 

A mapping f  from a group G into a group GJ is called a homomorphism if, for every a, b ∈ G, 

f(ab) = f(a)f(b) 

In addition, if f  is one-to-one and onto, then f  is called an isomorphism; and G and GJ are said to be 
isomorphic, 

written G ∼= GJ.   
J
 



If f : G → G is a homomorphism, then the kernel of f , written Ker f , is the set of elements 
whose image 

is the identity element eJ of GJ; 
that is, 

 

Ker f  = {a ∈ G | f (a)  = eJ} 

Recall that the image of f , written f(G) or Im f , consists of the images of the elements under f ; 

that is, 

Im f  = {b ∈ GJ | there exists a ∈ G for which f (a) = b} . 

The following theorem (proved in Problem B.19) is fundamental to group theory. 



→ 

∼ = = 

= { } = 

+ 

Theorem B.9:  Suppose f : G GJ is a homomorphism with kernel K. Then K is a normal subgroup of 

G, and the quotient group G/K is isomorphic to f (G). 

 

 

EXAMPLE B.12 

(a) Let G be the group of real numbers under addition, and let GJ be the group of positive real 

numbers under multiplication. The mapping f : G → GJ defined by f(a) = 2a is a 
homomorphism because 

f(a + b) = 2a+b = 2a2b = f(a)f(b) 

In fact, f  is also one-to-one and onto; hence G and GJ are isomorphic. 

(b) Let a be any element in a group G. The function f : Z → G defined by f (n) = an is a 
homomorphism since 

f(m + n) = am+n = am · an = f(m) · f (n) 

The image of f is gp(a), the cyclic subgroup generated by a. By Theorem B.9, 

gp(a) ∼= Z/K 

where K is the kernel of f.   If K      0  ,  then gp(a)      Z.   On the other hand,  if m is the order of 
a, then  K {multiples of m}, and so gp(a) Zm. In other words,  any cyclic group is isomorphic to 

either the  integers Z under addition, or to Zm, the integers under addition modulo m. 

 

 

B.2 RINGS, INTEGRAL DOMAINS, AND FIELDS 

Let R be a nonempty set with two binary operations, an operation of addition (denoted by ) and an 

operation of multiplication (denoted by juxtaposition). Then R is called a ring if the following 

axioms are satisfied: 

 

[R1] For any a, b, c ∈ R, we have (a + b) + c = a + (b + c). 

[R2] There exists an element 0 ∈ R, called the zero element, such that, for every a ∈ R, 

a + 0 = 0 + a = a. 

[R3] For each a ∈ R there exists an element −a ∈ R, called the negative of a, such that 

a + (−a) = (−a) + a = 0. 

[R4] For any a, b ∈ R, we have a + b = b + 

a. [R5] For any a, b, c ∈ R, we have (ab)c = 

a(bc). 



·   =   · = ∈ 
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[R6] For any a, b, c ∈ R, we have: (i) a(b + c) = ab + ac, and (ii) (b + c)a = ba + ca. 

Observe that the axioms [R1] through [R4] may be summarized by saying that R is an abelian 

group under addition. 

Subtraction is defined in R by a b a ( b). 

One can prove (Problem B.21) that a  0 0  a 0 for every a R. 

A subset S of R is a subring of R if S itself is a ring under the operations in R. We note that S is a 
subring of 

R if: (i) 0 ∈ S, and (ii) for any a, b ∈ S, we have a − b ∈ S and ab ∈ S. 
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Special Kinds of Rings: Integral Domains and Fields 

This subsection defines a number of different kinds of rings, including integral domains and fields. 

R is called a commutative ring if ab ba for every a, b R. 

R is called a ring with an identity element 1 if the element 1 has the property that a 1 1 a a for 
every element a R. In such a case, an element a R  is called a unit if a  has a multiplicative inverse, 

that is, an  element a−1 in R such that a a−1 a−1 a 1. 

R is called a ring with zero divisors if there exist nonzero elements a, b R such that ab 0. In such a 

case, a and b are called zero divisors. 

Definition B.3: A commutative ring R is an integral domain if R has no zero divisors, that is, if ab = 0 
implies 

a = 0 or b = 0. 

Definition B.4: A commutative ring R with an identity element 1 (not equal to 0) is a field if every 
nonzero 

a ∈ R is a unit, that is, has a multiplicative inverse. 

A field is necessarily an integral domain; for if ab = 0 and a /= 0, then 

b = 1 · b = a−1ab = a−1 · 0 = 0 

We remark that a field may also be viewed as a commutative ring in which the nonzero elements form 

a group under multiplication. 

 

 

EXAMPLE B.13 

(a) The set Z of integers with the usual operations of addition and multiplication is the classical 

example of an integral domain (with an identity element). The units in Z are only 1 and 1, that is, 

no other element in Z has a multiplicative inverse. 
 

(b) The set Zm         0, 1, 2 , . . . ,m    1   under the operation of addition and multiplication modulo m 

is a ring; it is called the ring of integers modulo m. If m is a prime, then Zm is a field.  On the other 

hand,  if m is  not a prime then Zm has zero divisors. For instance, in the ring Z6, 

2 · 3 = 0 but 2 /≡ 0 (mod 6) and 3 /≡ 0 (mod 6) 

(c) The rational numbers Q and the real numbers R each form a field with respect to the usual 

operations of addition and multiplication. 
 

(d) Let M denote the set of 2 2 matrices with integer or real entries. Then M is a noncommutative ring 

with zero divisors under the operations of matrix addition and matrix multiplication. M does have 

an identity element, the identity matrix. 

 

(e) Let R be any ring. Then the set R x of all polynomials over R is a ring with respect to the usual 

operations of addition and multiplication of polynomials. Moreover, if R is an integral domain then 

R x is also an integral domain. 
 



Ideals 

A subset J of a ring R is called an ideal in R if the following three properties hold: 

(i) 0 ∈ J . 

(ii) For any a, b ∈ J , we have a − b ∈ J . 

(iii) For any r ∈ R and a ∈ J , we have ra, ar ∈ J . 



{ |+  ∈
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Note first that J is a subring of R. Also, J is a subgroup (necessarily normal) of the additive group 

of R. Thus we can form the following collection of cosets which form a partition of R: 

{a + J | a ∈ R} 

The importance of ideals comes from the following theorem which is analogous to Theorem B.7 for 

normal subgroups. 

Theorem B.10:  Let J be an ideal in a ring R. Then the cosets  a J   a R form a ring under 

the coset operations 

(a + J) + (b + J) = a + b + J and (a + J)(b + J) = ab + J 

This ring is denoted by R/J and is called the quotient ring. 

Now let R be a commutative ring with an identity element 1. For any a ∈ R, the following set is 

an ideal: 

(a) = {ra | r ∈ R}= aR 

It is called the principal ideal generated by a. If every ideal in R is a principal ideal, then R is called a 

principal ideal ring. In particular, if R is also an integral domain, then R is called a principal ideal 

domain (PID). 

 

 

EXAMPLE B.14 

(a) Consider the ring Z of integers.  Then every ideal J  in Z is a principal ideal, that is, J   (m)   mZ, for   
some integer m. Thus Z is a principal ideal domain (PID). The quotient ring Zm  Z/(m) is simply 

the ring of integers modulo m. Although Z is an integral domain (no zero divisors), the quotient 
ring Zm may have zero divisors, e.g., 2 and 3 are zero divisors in Z6. 

(b) Let R be any ring. Then {0} and R are ideals. In particular, if R is a field, then {0} and R are the only 
ideals. 

(c) Let K be a field. Then the ring K[x] of polynomials over K is a PID (principal ideal domain). On the 
other hand, the ring K[x, y] of polynomials in two variables is not a PID. 

Ring Homomorphisms 

A mapping f from a ring R into a ring RJ  is called a ring homomorphism or,  simply,  

homomorphism if, for every a, b ∈ R, 

f(a + b) = f(a) + f (b), f (ab) = f(a)f(b) 

In addition, if f is one-to-one and onto, then f is called an isomorphism; and R and RJ are said to be 
isomorphic, 

written R ∼= RJ. 
Suppose f :R  →  
RJ 

 
is a homomorphism. Then the kernel of f , written Ker f , is the set of 
elements 

whose image is the zero element 0 of RJ; that is, 

Ker f = {r ∈ R | f(r) = 0} 
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The following theorem (analogous to Theorem B.9 for groups) is fundamental to ring theory. 

Theorem  B.11:  Let f  R RJ  be a ring homomorphism with kernel K. Then K is an ideal in R,  

and the quotient ring R/K is isomorphic to f (R). 

 

Divisibility in Integral Domains 

Now let D be an integral domain. We say that b divides a in D if a   bc for some c    D. An element 

u    D is called a unit if u divides 1, i.e., if u has a multiplicative inverse.  An element b    D is called an 

associate of  a    D if b    ua for some unit u    D.  A nonunit p    D is said to be irreducible if p    ab 

implies a or b is a    unit. 

An integral domain D is called a unique factorization domain (UFD), if every nonunit a D can be 

written uniquely (up to associates and order) as a product of irreducible elements. 



. 

EXAMPLE B.15 

(a) The ring Z of integers is the classical example of a unique factorization domain. The units of Z are 
1 and −1. The only associates of n ∈ Z are n and −n. The irreducible elements of Z are the 
prime numbers. 

(b) The set D = {a + b
√

13 | a,b integers} is an integral domain. The units of D follow: 

±1, 18 ± 5
√

13, −18 ± 5
√

13 

The elements 2, 3 − 
√

13 and −3 − 
√

13 are irreducible in D. Observe that 

4 = 2 · 2 = (3 − 
√

13)(−3 − 
√

13) 

Thus D is not a unique factorization domain. (See Problem B.97.) 

 

B.3 POLYNOMIALS OVER A FIELD 

This section investigates polynomials whose coefficients come from some integral domain or 

field K.      In particular, we show that polynomials over a field K have many of the same 

properties as the integers. 

 

Basic Definitions 

Let K be an integral domain or a field. Formally, a polynomial f over K is an infinite sequence of 

elements from K in which all except a finite number of them are 0; that is, 

f = (. . . ,  0, an,. . . ,  a1, a0) or, equivalently, f (t) = antn + ··· + a1t + a0 

where the symbol t is used as an indeterminate. The entry ak is called the kth coefficient of f. If n is 

the largest integer for which a /= 0, then we say that the degree of f is n, written deg(f ) = n. We also 
call an the leading coefficient of f. If an = 1, we call f a monic polynomial. On the other hand, if every 

coefficient of f is 0 then f is called the zero polynomial, written f ≡ 0. The degree of the zero 
polynomial is not defined. 

Let K[t ] be the collection of all polynomials f(t) over K. Consider the polynomials 

f(t) = antn + ··· + a1t + a0 and g(t) = bmtm + ··· + b1t + b0 

Then the sum f + g is the polynomial obtained by adding corresponding coefficients; that is, if m ≤ n, 

then 

f(t) + g(t) = antn + ··· + (am + bm)tm + ··· + (a1 + b1)t + (a0 + b0) 

Furthermore, the product of f and g is the polynomial 

f (t)g(t) = (anbm)tn+m + ···  + (a1b0 + a0b1)t + (a0b0) 

That is, 

 

k 

f (t)g(t) = cn+mtn+m + ···  + c1t + c0 where   ck = aibk−i = a0bk + 

a1bk−1 + ···  + akb0 

i=0 



[ ] ∈ 
The set K of scalars is viewed as a subset of K t .  Specifically, we identify the scalar a0 K 

with the polynomial 

f (t) = a0 or    a0  = (· · · , 0, 0, a0) 

Then the operators of addition and scalar multiplication are preserved by this identification. Thus, the 
mapping 

ψ: K → K[t ] defined by ψ(a0) = a0 is an isomorphism which embeds K into K[t ]. 



[ ] 
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Theorem B.12: Let K be an integral domain. Then K t under the operations of addition and 

multiplication of polynomials is a commutative ring with an identity element 1. 

The following simple result has important consequences. 

Lemma B.13: Suppose f and g are polynomials over an integral domain K. Then 

deg(fg) = deg(f ) + deg(g). 

The proof follows directly from the definition of the product of polynomials. Namely, suppose 

f(t) = antn + ···  + a1t + a0 and g(t) = bmtm + ···  + b1t + b0 

where an /= 0 and bm /= 0. Thus deg(f ) = n and deg(g) = m. Then 

f (t)g(t) = anbmtn+m + terms of lower 

degree Also, since K is an integral domain with no zero divisors, anbm 

/= 0. Thus 

deg(fg) = m + n = deg(f ) + deg(g) 

and the lemma is proved. 

The following proposition lists many properties of our polynomials. (Recall that a polynomial g is 
said to 

divide a polynomial f if there exists a polynomial h such that f(t) = g(t)h(t).) 

Proposition B.14: Let K be an integral domain and let f and g be polynomials over K. 

(i) K[t ] is an integral domain. 

(ii) The units of K[t ] are the units in K. 

(iii) If g divides f , then deg(g) ≤ deg(f ) or f ≡ 0. 

(iv) If g divides f and f divides g, then f(t) = kg(t) where k is a unit in K. 

(v) If d and dJ are monic polynomials such that d divides dJ and dJ divides d, 

then d = dJ. 

Euclidean Algorithm, Roots of Polynomials 

This subsection discusses the roots of a polynomial f(t), where we now assume the 

coefficients of f(t) come from a field K. Recall that a scalar a K is a root of a polynomial f(t) if 

f(a) 0. First we begin with an important theorem which is very similar to a corresponding theorem 

for the integers Z. 

Theorem B.15 (Euclidean Division Algorithm): Let f(t) and g(t) be polynomials over a field K with g(t) 

0. 

Then there exist polynomials q(t) and r(t) such that 

f(t) = q(t)g(t) + r(t) 



where either r(t) ≡ 0 or deg(r) < deg(g). 

The above theorem (proved in Problem B.30) formalizes the process known as “long division.” 

The poly- nomial q(t) is called the quotient and the polynomial r(t) is called the remainder when 

f(t) is divided by g(t). 

Corollary B.16 (Remainder Theorem): Suppose f(t) is divided by g(t) = t − a. Then f(a) is the 

remainder. 

The proof follows from the Euclidean Algorithm. That is, dividing f(t) by t − a we 

get 

f(t) = q(t)(t − a) + r(t) 

where deg(r) < deg(t − a) = 1. Hence r(t) = r is a scalar. Substituting t = a in the equation for f(t) 

yields 

f(a) = q(a)(a − a) + r = q(t) · 0 + r = r 

Thus f(a) is the remainder, as claimed. 



= = − + − + − = 
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Corollary B.16 also tells us that f(a) = 0 if and only if the remainder r = r(t) ≡ 0. Accordingly: 

Corollary B.17 (Factor Theorem): The scalar a ∈ K is a root of f(t) if and only if t − a is a factor 

of f(t). 

The next theorem (proved in Problem B.31) tells us the number of possible roots of a 

polynomial. 

Theorem B.18: Suppose f(t) is a polynomial over a field K, and deg(f ) = n. Then f(t) has at most 

n roots. 

The following theorem (proved in Problem B.32) is the main tool for finding rational roots of a 

polynomial with integer coefficients. 

Theorem B.19: Suppose a rational number p/q (reduced to lowest terms) is a root of the 

polynomial 

 

f(t) = antn + ··· + a1t + a0 

where all the coefficients an,…, a1, a0 are integers. Then p divides the constant term 

a0 and q divides the leading coefficient an. In particular, if c = p/q is an integer, then 

c divides the constant term a0. 

 

 

EXAMPLE B.16 

(a) Suppose f(t) = t 3 + t 2 − 8t + 4. Assuming f(t) has a rational root, find all the roots of f(t). 

Since the leading coefficient is 1, the rational roots of f(t) must be integers from among ±1, 

±2, ±4. 

Note f (1) /= 0 and f (−1) /= 0. By synthetic division, or dividing by t − 2, we get 

2   1    +   1    −   8    +   4 
2    +   6    −   4 

1    +   3    −   2    +   0 

Therefore t 2 is a root and f(t) (t 2)(t2 3t 2). Using the quadratic formula for t 2 3t 2

 0, we obtain the following three roots of f(t): 

t = 2, t = (−3 + 
√

17)/2, t = (−3 − 
√

17)/2 

(b) Suppose h(t) = t 4 − 2t 3 + 11t − 10. Find all the real roots of h(t) assuming there are two 
integer roots. 

The integer roots must be among ±1, ±2, ±5, ±10. By synthetic division (or dividing by t − 
1 and then t + 2) we get 

1   1    −   2    +   0    +   11 −   10 

. 1    −  1   − 1    +  10  
 

 −2   1    −   1    −   1    +   10   + 0 
−   2    +   6    −   10 

1    −   3    +   5   + 0 

. 



[ ] 
[ ] 

Thus t = 1 and t = −2 are roots and h(t) = (t−1)(t + 2)(t2−3t + 5). The quadratic formula with t 
2 − 3t + 5 tells us that there are no other real roots. That is, t = 1 and t = −2 are the only real 
roots of h(t). 

K[t] as a PID and UFD 

The following theorems (proved in Problems B.33 and B.34) apply. 

Theorem B.20: The ring K t of polynomials over a field K is a principal ideal domain (PID). That is, 

if J is an ideal in K t , then there exists a unique monic polynomial d which generates 

J , that is, every polynomial f in J is a multiple of d. 
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Theorem B.21: Let f and g be polynomials in K t , not both zero. Then there exists a unique monic 

polynomial 

d such that: 

(i) d divides both f and g. (ii) If dJ divides f and g, then dJ divides d. 

The polynomial d in the above Theorem B.21 is called the greatest common divisor of f and g, 
written 

d = gcd(f , g). If d = 1, then f and g are said to be relatively prime. 

Corollary B.22: Let d be the greatest common divisor of f and g. Then there exist polynomials m and 

n such that d = mf + ng. In particular, if f and g are relatively prime, then there exist 

polynomials m and n such that mf + ng = 1. 

A polynomial p    K  t   is said to be irreducible if p is not a scalar and if p     fg implies f or g is a 

scalar.  In other words, p is irreducible if its only divisors are its associates (scalar multiples). The 

following lemma (proved in Problem B.36) applies. 

Lemma B.23: Suppose p ∈ K[t ] is irreducible. If p divides the product fg of polynomials f and g in K[t 
], then p divides f or p divides g. More generally, if p divides the product f1f2 fn of 
n polynomials, then p divides one of them. 

The next theorem (proved in Problem B.37) states that the polynomials over a field form a unique 

factorization domain (UFD). 

Theorem B.24 (Unique Factorization Theorem): Let f be a nonzero polynomial in K t . Then f can be 

written uniquely (except for order) as a product 

f = kp1p2 . . .  pn 

where k ∈ K and the p’s are monic irreducible polynomials in K[t ]. 

Fundamental Theorem of Algebra 

The proof of the following theorem lies beyond the scope of this text. 

 

Fundamental Theorem of Algebra: Any nonzero polynomial f(t) over the complex field C has a root 

in C. 

Thus f(t) can be written uniquely (except for order) as a product 

f(t) = k(t − r1)(t − r2) ··· (t − rn) 

where k and the ri are complex numbers and deg(f ) n. 

The above theorem is certainly not true for the real field R. For example, f(t) t 2 1 is a 
polynomial 

over R, but f(t) has no real root. 

The following theorem (proved in Problem B.38) does apply. 

Theorem B.25:  Suppose f(t) is a polynomial over the real field R, and suppose the complex 

number      z a bi, b 0, is a root of f(t). Then the complex conjugate z a bi is also 

a root of f(t). Hence the following is a factor of f(t): 



c(t) = (t − z)(t − z̄) = t 2 − 2at + a2 + b2 

The following theorem follows from Theorem B.25 and the Fundamental Theorem of Algebra. 

Theorem B.26: Let f(t) be a nonzero polynomial over the real field R. Then f(t) can be written 

uniquely (except for order) as a product 

f(t) = kp1(t)p2(t) ··· pn(t) 

where k ∈ R and the pi (t ) are real monic polynomials of degree 1 or 2. 



+ − = − + 

EXAMPLE B.17 Let f(t) = t 4 − 3t 3 + 6t 2 + 25t − 39. Find all the roots of f(t) given that t = 

2 + 3i is a 

Since 2 3i is a root, then 2 3i is a root and c(t) t 2 4t 13 is a factor of f(t). Dividing f(t) by 

c(t) 

we get 

f(t) = (t2 − 4t + 13)(t2 + t − 3) 

The quadratic formula with t 2 + t − 3 gives us the other roots of f(t). That is, the four roots of 

f(t) are as 
follows
: t  = 2 + 3i, t  = 2 − 3i, t = (−1 

+ 

   

13)/2, t = (−1 
− 

   

13)/2 

root. 

√ √ 
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Solved Problems 

 

 

 Q1 consider the set Q of rational numbers, and let ∗ be the operation on Q defined by 

a ∗ b = a + b − ab 

(a) Find: (i) 3 ∗ 4; (ii) 2 ∗ (−5); (iii) 7 ∗ (1/2). 

(b) Is (Q, ∗) a semigroup? Is it commutative? 

(c) Find the identity element for ∗. 

(d) Do any of the elements in Q have an inverse? What is it? 

(a) (i) 3 ∗ 4 = 3 + 4 − 3(4) = 3 + 4 − 12 = −5 

(ii) 2 ∗ (−5) = 2 + (−5) + 2(−5) = 2 − 5 + 

10 = 7 (iii) 7 ∗ (1/2) = 7 + (1/2) − 7(1/2) = 
4 

(b) We have: 

(a ∗ b) ∗ c = (a + b − ab) ∗ c = (a + b − ab) + c − (a + b − ab)c 

= a + b − ab + c − ac − bc + abc = a + b + c − ab − 
ac − bc + abc a ∗ (b ∗ c) = a ∗ (b + c − bc) = a + (b + c − bc) − 
a(b + c − bc) 

= a + b + c − bc − ab − ac + abc 

Hence ∗ is associative and (Q, ∗) is a semigroup. Also 

a ∗ b = a + b − ab = b + a − ba = b ∗ a 

Hence (Q, ∗) is a commutative semigroup. 

(c) An element e is an identity element if a ∗ e = a for every a ∈ Q. Compute as follows: 

a ∗ e = a, a + e − ae = a, e − ea = 0, e(1 

− a) = 0, e = 0 Accordingly, 0 is the identity element. 

(d) In order for a to have an inverse x, we must have a x 0 since 0 is the 

identity element by Part (c). Compute as follows: 

a ∗ x = 0, a + x − ax = 0, a = ax − x, a = x(a − l), x = a/(a − 

l) 

Thus if a /= 1, then a has an inverse and it is a/(a − 1). 



= 
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Q .Let S be a semigroup with identity e, and let b and bJ be inverses of a.  Show that b bJ, that is, 

that inverses are unique if they exist. 

We have: 

b ∗ (a ∗ bJ) = b ∗ e = b    and    (b ∗ a) ∗ bJ = e ∗ bJ = bJ 

Since S is associative, (b ∗ a) ∗ bJ  = b∗ (a ∗ bJ); hence b = bJ. 

Q. Let S = N × N. Let ∗ be the operation on S defined by (a, b) ∗ (aJ, bJ) = (aaJ, bbJ). 

(a) Show that ∗ is associative. (Hence S is a semigroup.) 

(b) Define f : (S, ∗) → (Q, ×) by f(a, b) = a/b. Show that f is a homomorphism. 

(c) Find the congruence relation ∼ in S determined by the homomorphism f , that is, 
where x ∼ y if 
f(x) = f(y). (See Theorem B.4.) 

(d) Describe S/ ∼. Does S/ ∼ have an identity element? Does it have 

inverses? Suppose x = (a, b), y = (c, d), z = (e, f ). 

(a) We have 

(xy)z = (ac, bd) ∗ (e, f ) = [(ac)e, (bd)f ] 

x(yz) = (a, b) ∗ (ce, df ) = [a(ce), b(df )] 

Since a, b, c, d, e, f , are positive integers, (ac)e = a(ce) and (bd)f = b(df ). Thus (xy)z = 
x(yz) and hence ∗ 

is associative. That is, (S, ∗) is a semigroup. 

(b) f is a homomorphism since 

f (x ∗ y) = f (ac, bd) = (ac)/(bd) = (a/b)(c/d) = 

f (x)f (y) 

(c) Suppose f (x) = f (y). Then a/b = c/d and hence ad= bc. Thus f determines the 
congruence relation ∼ on S 
defined by (a, b) ∼ (c, d) if ad = bc. 

(d) The image of f is Q+, the set of positive rational numbers. By Theorem B.3, S/ ∼ is 
isomorphic to Q+. Thus 
S/ ∼ does have an identity element, and every element has an inverse. 

B.2. Prove Theorem B.1. Suppose is an 
associative operation on a set S. Then any product a1 a2    … an 
requires no parenthesis, that is, all possible products are equal. 

The proof is by induction on n.   Since n is associative, the theorem holds for n 1, 

2, and 3.  Suppose n 4. 

We use the notation: 



∈ = ∈ [ ]  = = 
[ ]  = [ ] = ∼ [ ]=  [ ] 

(a1a2, · · · an) = (· · · ((a1a2)a3) · · · )an      and    [a1a2 · · · an] = any product 

We show [a1a2  · · · an] = (a1a2 · · · an) and so all such products will be equal. Since [a1a2 · · · 

an] denotes some product, there exists an r < n such that [a1a2 · · · an] = [a1a2 · · · ar ] [ar+1 
· · · an]. Therefore, by induction, 

[a1a2 · · · an] = [a1a2 · · · ar ] [ar+1 · · · an] = [a1a2 · · · ar ](ar+1 · · · an) 

= [a1 ··· ar ] ((ar+1 ··· an−1)an) = ([a1 ··· ar ] (ar−1 ··· 
an−1))an 

= [a1 ··· an−1]an = (a1 ··· an−1)an = (a1a2 ··· an) 

Thus the theorem is proved. 

 

B.3. Prove Theorem B.4: Let f : S → SJ be a semigroup homomorphism. Let a ∼ b if f(a) = f(b). 

Then: 
(i) ∼ is a congruence relation; (ii) S/ ∼ is isomorphic to f(S). 

(i) First we show that ∼ is an equivalence relation. Since f (a) = f (a), we have a ∼ a. 

If a  ∼ b, then f (a) = f (b) or f (b) = f (a); hence b ∼ a.  Lastly, if a  ∼ b and b ∼ c, then 
f (a) = f (b) and f (b) = f (c); hence f (a) = f (c).  Thus a ∼ c.  That is, ∼ is an equivalence 

relation.  Suppose now a ∼ aJ  and b ∼ bJ. Then f (a) = f (aJ) and f (b) = f (bJ). 

Since f is a homomorphism, 

f (ab) = f (a)f (b) = f (aJ) f (bJ) = f (aJbJ) 

Therefore ab ∼ aJbJ. That is, ∼ is a congruence relation. 

(ii) Define W: S/ ∼ →f(S) by W([a]) = f (a). We need to prove: (1) W is well-defined, that is, 
W([a]) ∈ f (S), and if [a]= [b] then f ([a]) = f ([b]). (2) W is an isomorphism, that is, W is 
a homomorphism, one-to-one and onto. 

(1) Proof that W is well-defined: We have W([a]) = f (a). Since a ∈ S, we have f (a) ∈ f (S). 
Hence W([a]) ∈ f (S), as required. Now suppose [a]= [b]. Then a ∼ b and hence f (a) = 
f (b). Thus 

W([a]) = f (a) = f (b) = W([b]) 

That is, W is well-defined. 

(2) Proof that W is an isomorphism: Since f is a homomorphism, 

W([a][b]) = W[ab]= f (ab) = f (a)f (b) = W([a])W([b]) 

Hence W is a homomorphism. Suppose W( a )  W( b ). Then f(a)   f (b), and so a   

b. Thus a  b and W is one-to-one. Lastly, let y f (S). Then, f (a) y for some a  S. 

Hence W( a )  f (a) y. Thus W is onto f (S). Accordingly, W is an isomorphism. 

 

 



·   = ∗ = 

∗ 

= { } 

B.4. Consider the group G = {1, 2, 3, 4, 5, 6} under multiplication modulo 7. 

(a) Find the multiplication table of G. (b) Find 2−1, 3−1, 6−1. 

(c)  Find the orders and subgroups generated by 2 and 3. (d) Is G cyclic? 

(a) To find a ∗ b in G, find the remainder when the product ab is divided by 7. 

For example, 5 6 30 which yields a remainder of 2 when divided by 7; hence 5 6 2 in G. The 

multiplication table of G appears in Fig. B-6(a). 

(b) Note first that 1 is the identity element of G. Recall that a−1  is that element of G such 

that aa−1  =1.  Hence   2−1 = 4, 3−1 = 5 and 6−1 = 6. 

(c) We have 21 = 2, 22 = 4, but 23 = 1. Hence |2| = 3 and gp(2) = {1, 2, 4}. We have 31 = 3, 
32 = 2, 33 = 6, 

34 = 4, 35 = 5, 36 = 1. Hence |3| = 6 and gp(3) = G. 

(d) G is cyclic since G = gp(3). 

 

 

 
  

 

Fig. B-6 

 

B.5. Let G be a reduced residue system modulo 15, say, G 1, 2, 4, 7, 8, 11, 13, 14 (the set of 

integers between 1 and 15 which are coprime to 15). Then G is a group under multiplication 

modulo 15. 

(a) Find the multiplication table of G. (b) Find 2−1, 7−1, 11−1. 

(c)  Find the orders and subgroups generated by 2, 7, and 11. (d) Is G cyclic? 

 

(a) To find a b in G, find the remainder when the product ab is divided by 15. The 

multiplication table appears in Fig. B-6(b). 

(b) The integers r and s are inverses if r ∗ s = 1. Hence: 2−1 = 8, 7−1 = 13, 11−1 = 11. 



. . 

. . 

1 1 1 1 

2 2 2 2 

3 3 3 3 

1 2 1 2 1 1 1 1 2 

2 1 2 1 2 2 1 2 1 

(c) We have 22 = 4, 23 = 8, 24 = 1. Hence |2| = 4 and gp(2) = {1, 2, 4, 8}. Also, 

72 = 4, 73 = 4 ∗ 7 = 13, 74 = 13 ∗ 7 = 1. Hence |7| = 4 and gp(7) = {1, 4, 7, 13}. Lastly, 112 

= 1. Hence |11| = 2 

and gp(11) = {1, 11}. 

(d) No, since no element generates G. 

 

 

B.6. Consider the symmetric group S3 whose multiplication table is given in Fig. B-4. 

(a) Find the order and the group generated by each element of S3. 

(b) Find the number and all subgroups of S3. 

(c) Let A = {σ1, σ2} and B = {φ1, φ2}. Find AB, σ3A, and Aσ3. 

(d) Let H = gp(σ1) and K = gp(σ2). Show that HK is not a subgroup of S3. 

(e) Is S3 cyclic? 

(a) There are six elements: (1) ε, (2) σ1, (3) σ2, (4) σ3, (5) φ1, (6) φ2. Find the powers of each 

element x until xn = ε. Then |x|= n, and gp(x) = {ε, x1, x2, …, xn−1}. Note x1 = x, so we 
need only begin with n = 2 when x /= ε. 

(1) ε1 = ε; so |ε| = 1 and g(ε) = {ε}. 

(2) σ 2 = ε; hence .σ . = 2 and gp(σ ) = {ε, σ }. 
 

(3) σ 2 = ε; hence .σ . = 2 and gp(σ ) = {ε, σ }. 
 

(4) σ 2 = ε; hence .σ . = 2 and gp(σ ) = {ε, σ }. 
 

(5) φ2 = φ , φ3 = φ φ  = ε; hence .φ . = 3 and gp(φ ) = {ε, φ ,φ }. 
 

(6) φ2 = φ , φ3 = φ φ  = ε; hence .φ . = 3 and gp(φ ) = {ε, φ ,φ }. 
 

(b) First of all, H1 = {ε} and H2 = S3 are subgroups of S3.  Any other subgroup of S3 must have 

order 2 or 3 since its order must divide S3 = 6. Since 2 and 3 are prime numbers, these 
subgroups must be cyclic (Problem B.61) and hence must appear in part (a). Thus the other 
subgroups of S3 follow: 

H3  = {ε, σ1}, H4  = {ε, σ2}, H5  = {ε, σ3}, H6 = {ε, φ1, φ2} 

Accordingly, S3 has six subgroups. 

(c) Multiply each element of A by each element of B: 
 

σ1φ1 = σ2, σ1φ2 = σ3, σ3φ1 = σ3, σ2φ2  = σ1 



= { = { = { } 

3 1 5 4 6 2 5 3 1 6 2 4 

Hence AB = {σ1, σ2, σ3}. 

Multiply σ3 by each element of A: 

σ3σ1 = φ1, σ3σ2 = φ2, hence   σ3A = {φ1, φ2} 

Multiply each element of A by σ3: 

σ1σ3 = φ2, σ2σ3 = φ1, hence   Aσ3  = {φ1, φ2} 

(d) H e, σ1}, K e,  σ2} and then HK e, σ1, σ2, φ1 , which is not a subgroup of S3 since 

HK has four elements. 

(e) S3 is not cyclic since S3 is not generated by any of its elements. 

B.7. Let σ and τ be the following elements of the symmetric group S6: 

σ = 
. 

1   2   3   4   5    6 
Σ 

and τ = 
. 

1 2 3 4 5 6 
Σ

 

 

Find: τσ , στ , σ 2, and σ −1. (Since σ and τ are functions, τσ means apply σ and then τ .) 

Figure B-7 shows the effect on 1, 2, …, 6 of the composition of the permutations: 

(a) σ and then τ ;   (b) τ and then σ ; (c) σ and 

then σ , i.e. σ 2. Thus: 

τσ = 
.

 

3    4    5  6 
Σ

, στ = 
. 

1   2   3   4   5   6   
Σ 

, σ 2 

= 
. 

1   2 
Σ

 

 

We obtain σ −1 by interchanging the top and bottom rows of σ and then rearranging: 

σ −1 = 
.

 4    6    2  
Σ 

= 
. 

1    2    3 4   5 
Σ

 

1 2     3 4 5 6 

1 5 2 6 4 3 6 5 3 2 1 4 5 3 6 4 2 1 

 

3 1 5   6 

1 2 3 4 5 6 2 6 1 4 3 5 

 



 

 

   

 

 

Fig. B-7 

B.8. Let H and K be groups. 
 

(a) Define the direct product G = H × K of H and K. 

(b) What is the identity element and the order of G = H × K? 

(c) Describe and find the multiplication table of the group G = Z2× Z2. 

(a) Let G = H × K, the Cartesian product of H and K, with the operation ∗ defined 
componentwise by 

(h,  k) ∗ hJ,  kJ = (hhJ, kkJ) 

Then G is a group (Problem B.68), called the direct product of H and K. 

(b) The element e = (eH , eK) is the identity element of G, and |G| = |H | · |K|. 

(c) Since Z2 has two elements, G has four elements. Let 

e = (0, 0), a = (1, 0), b = (0, 1), c = (1, 1) 

The multiplication table of G appears in Fig. B-8(a). Note that G is abelian since the table is 
symmetric. Also, 

a2 = e, b2 = e, c2 = e. Thus G is not cyclic, and hence G ∼= Z4. 

 

B.9. Let S be the square in the plane R2 pictured in Fig. B-8(b), with its center at the origin 0. Note 

that the vertices of S are numbered counterclockwise from 1 to 4. 

(a) Define the group G of symmetries of S. 

(b) List the elements of G. 

(c) Find a minimum set of generators of G. 

 
 

 
  



= 

1 2 3 4 2 3 4 1 

3 4 1 4 4 1 2 3 

2 1 4 3 3 2 1 4 

4 3 2 1 1 4 3 2 

 

Fig. B-8 

 

 

(a) A symmetry σ of S is a rigid one-to-one correspondence between S and itself. (Here rigid 

means that distances between points do not change.) The group G of symmetries of S is the 

set of all symmetries of S under composition of mappings. 

(b) There are eight symmetries as follows. For α 0◦, 90◦, 180◦, 270◦, let σ (α) be the symmetry 

obtained by rotating S about its center α degrees, and let τ (α) be the symmetry obtained 

by reflecting S about the y-axis and then rotating S about its center α degrees. Note that 

any symmetry σ of S is completely determined by its effect on the vertices of S and hence 

σ can be represented as a permutation in S4. Thus: 

σ (0◦) = 
. 

1   2   3   4 
Σ 

, σ(90◦) = 
. 

1 2 3 4  
Σ 

, 

σ (180◦) = 
. 

1   2   3   4 
Σ 

, σ(270◦) = 
. 

1 2  3  4  
Σ

 

τ (0◦) = 
. 

1   2   3   4 
Σ 

, τ(90◦) = 
. 

1 2 3  4  
Σ 

, 

τ (180◦) = 
. 

1   2   3   4 
Σ 

, τ(270◦) = 
. 

1 2  3  4  
Σ

 

(c) Let a = σ (90◦) and b = τ (0◦). Then a and b form a maximum set of generators of G. 
Specifically, 

σ (0◦) = a4, σ(90◦) = a, σ(180◦) = a2, σ(270◦) = 
a3 

τ (0◦) = b, τ(90◦) = ba, τ(180◦) = ba2, τ(270◦) = 
ba3 

and G is not cyclic so it is not generated by one element. (One can show that the relations 
a4 = e, b2 = e, and 

bab = a−1 completely describe G.) 

 

B.10. Let G be a group and let A be a nonempty set. 
 

(a) Define the meaning of the statement “G acts on A.” 

(b) Define the stabilizer Ha of an element a ∈ A. 

(c) Show that Ha is a subgroup of G. 

(a) Let PERM(A) denote the group of all permutations of A. Let ψ : G → PERM(A) be any 
homomorphism. Then 

G is said to act on A where each element g in G defines a permutation g : A → A by 

g(a) = (ψ(g))(a) 



= 

= = 

∈ = = { } 

(Frequently, the permutation g : A → A is given directly and hence the homomorphism is 

implicitly defined.) 

(b) The stabilizer Ha of a ∈ A consists of all elements of G which “fix a,” that is, 

Ha = {g ∈ G | g(a) = a} 

(c) Since e(a) = a, we have e ∈ Ha . Suppose g, gJ ∈ Ha . Then (ggJ)(a) = g(gJ(a)) = g(a) = 

a; hence ggJ ∈ Ha . Also, g−1(a) = a since g(a) = a; hence g−1 ∈ Ha . Thus Ha is a 
subgroup of G. 

B.11. Prove Theorem B.6: Let H be a subgroup of a group G. Then the right cosets Ha form a 
partition of G. 

Since e ∈ H , we have a = ea ∈ Ha; hence every element belongs to a coset. Now 
suppose Ha and Hb are not disjoint. Say c ∈ Ha ∩ Hb. The proof is complete if we show that 
Ha = Hb. 

Since c belongs to both Ha and Hb, we have c = h1a and c = h2b, where h1, h2 ∈ H. 

Then h1a = h2b, and so a = h−1 
1h2b. Let x ∈ H a. Then 

x = h3a = h3h−1 
1h2b 

where h3   ∈ H .  Since H is a subgroup, h3h−1 
1h2   ∈ H ; hence x  ∈ Hb.  Since x was any 

element of Ha, we have 

Ha ⊆ Hb. Similarly, Hb ⊆ Ha. Both inclusions imply Ha = Hb, and the theorem is proved. 

B.12. Let H be a finite subgroup of G. Show that H and any coset Ha have the same number of 
elements. 

Let H = {h1, h2,.. ., hk }, where H has k elements. Then Ha = {h1a, h2a, .. ., hka}. 

However, hia = hj a implies hi = hj ; hence the k elements listed in Ha are distinct. Thus H 

and Ha have the same number of elements. 

 

B.13. Prove Theorem B.7 (Lagrange): Let H be a subgroup of a finite group G. Then the order of H 

divides the order of G. 

Suppose H has r elements and there are s right cosets; say 

 

Ha1,Ha2,.. .,H as 

By Theorem B.6, the cosets partition G and by Problem B.14, each coset has r elements. 

Therefore G has rs elements, and so the order of H divides the order of G. 

B.14. Prove: Every subgroup of a cyclic group G is cyclic. 

Since G is cyclic, there is an element a     G such that G      gp(a).  Let H be a subgroup of G. 

If H      e  , then H gp(e) and H is cyclic. Otherwise, H contains a nonzero power of a. Since H is 

a subgroup, it must be closed under inverses and so H contains positive powers of a. Let m be 

the smallest positive power of a such that am belongs to H . We claim that b am generates H . 



Let x be any other element of H ; since x belongs to G we have x an  for some integer n. Dividing 

n by m we get a quotient q and a remainder r, that is, 

n = mq + r 

where 0 ≤ r < m. 

Then 

 

an = amq+r = amq · ar = bq · ar so ar = b−q an 



= = 

: → 

But an, b ∈ H . Since H is a subgroup, b−q an ∈ H , which means ar ∈ H . However, m is the 

smallest positive power of a belonging to H . Therefore, r = 0. Hence x = an = bq . Thus b 
generates H , and H is cyclic. 

B.15. Prove Theorem B.8: Let H be a normal subgroup of a group G. Then the cosets of H in G form 

a group under coset multiplication defined by (aH ) (bH) = abH . 

Coset multiplication is well-defined, since 

(aH)(bH) = a(Hb)H = a(bH)H = ab(HH) = abH 

(Here we have used the fact that H is normal, so Hb bH , and, from 

Problem B.57, that HH H .) Associativity of coset multiplication follows 

from the fact that associativity holds in G. H is the identity element of G/H , since 

(aH)H = a(HH) = aH and H (aH) = (Ha)H = (aH)H = aH 

Lastly, a−1H is the inverse of aH since 

(a−1H)(aH) = a−1aHH = eH = H and (aH)(a−1H) = aa−1HH = eH = H 

Thus G/H is a group under coset multiplication. 

B.16. Suppose F : G → GJ is a group homomorphism. Prove: (a) f(e) = eJ; (b) (f a−6) = 

f(a)−1. 

(a) Since e = ee and f is a homomorphism, we have 

f (e) = f (ee) = f (e)f (e) 

Multiplying both sides by f (e)−1 gives us our result. 

(b) Using part (a) and that aa−1 = a−1a = e, we have 

eJ = f (e) = f (aa−1) = f (a)f (a−1)    and    eJ = f (e) = f (a−1a) = f (a−1)f (a) 

Hence f (a−1) is the inverse of f (a); that is, f (a−1) = f (a)−1. 

B.17. Prove Theorem B.9: Let f G GJ be a homomorphism with kernel K. Then K is a normal 

subgroup of G, and G/K is isomorphic to the image of f. (Compare with Problem B.5, the 

analogous theorem for semigroups.) 

Proof that K is normal:  By Problem B.18, f (e)  = eJ, so e  ∈ K.  Now suppose a, b  ∈ K  
and g  ∈ G.  Then 

f (a) = eJ and f (b) = eJ. Hence 

f (ab) = f (a)f (b) = 

eJeJ  = eJ f (a−1) = f 

(a)−1 = eJ−1  = eJ 



∼ 

= 

f (gag−1) = f (g)f (a)f (g−1) = f (g)eJf (g)−1  = eJ 

Hence ab, a−1, and gag−1 belong to K, so K is a normal subgroup. 

Proof that G/K ∼= H, where H is the image of f: Let ϕ: G/K → H be defined by 

ϕ(Ka) = f (a) 

We show that ϕ is well-defined, i.e., if Ka = Kb then ϕ(Ka) = ϕ(Kb). Suppose Ka = Kb. 
Then ab−1 ∈ K 

(Problem B.57). Then f (ab−1) = eJ, and so 

f (a)f (b)−1 = f (a)f (b−1) = f (ab−1) = eJ 

Hence f (a) = f (b), and so ϕ(Ka) = ϕ(Kb). Thus ϕ is well-defined. 

We next show that ϕ is a homomorphism: 

ϕ(KaKb) = ϕ(Kab) = f (ab) = f (a)f (b) = ϕ(Ka)ϕ(Kb) 

Thus ϕ is a homomorphism.  We  next show that ϕ is one-to-one.  Suppose ϕ(Ka) = 

ϕ(Kb). Then 

f (a) = f (b)    or    f (a)f (b)−1 = eJ   or    f (a)f (b−1) = eJ   or    f (ab−1) = eJ 

Thus ab−1 ∈ K, and by Problem B.57 we have Ka = Kb. Thus ϕ is one-to-one. We next show 

that ϕ is onto. Let h ∈ H . Since H is the image of f , there exists a ∈ G such that f (a) = h. 

Thus ϕ(Ka) = f (a) = h, and so ϕ is onto. Consequently G/K = H and the theorem is proved. 

 

 

B.18. Consider  the  ring  Z10    =  {0, 1, 2 ,.. ., 9} of  integers modulo  10. (a) Find the units of 
Z10. 

(b) Find −3, −8, and 3−1. (c) Let f(x) = 2x2 + 4x + 4. Find the roots of f(x) over Z10. 

(a) By Problem B.78 those integers relatively prime to the modulus m 10 are the units in Z10. 

Hence the units are 1, 3, 7, and 9. 

(b) Recall that −a in a ring R is the element such that a+(−a) = (−a)+a = 0. Hence −3 = 7 

since 3+7 = 7+3 = 0 in Z10. Similarly −8 = 2. Recall that a−1 in a ring R is the element 

such that a · a−1 = a−1 · a = 1.  Hence 3−1 = 7 since 3 · 7 = 7 · 3 = 1 in Z10. 



· = · = − =  − = − − = − 

(c) Substitute each of the ten elements of Z10 into f (x) to see which elements yield 0. We 

have: 

f (0) = 4, f (2) = 0, f (4) = 2, f (6) = 0, f (8) = 4 

f (1) = 0, f (3) = 4, f (5) = 4, f (7) = 0, f (9) = 2 

Thus the roots are 1, 2, 6, and 7. (This example shows that a polynomial of degree n can 

have more than n roots over an arbitrary ring. This cannot happen if the ring is a field.) 

 

B.19. Prove that in a ring R:  (i) a   0 0  a 0; (ii) a(  b) (   a)b ab; (iii) (   1)a a (when R 

has an identity element 1). 

(i) Since 0 = 0 + 0, we have 
a · 0 = a(0 + 0) = a · 0 + a · 0 

Adding −(a · 0) to both sides yields 0 = a · 0. Similarly 0 · a = 
0. 

(ii) Using b + (−b) = (−b) + b = 0, we have 

ab + a(−b) = a(b + (−b)) = a · 0 = 0 

a(−b) + ab = a((−b) + b) = a · 0 = 0 

Hence a(−b) is the negative of ab; that is, a(−b) = −ab. Similarly, (−a)b = −ab. 

(iii) We have 
a + (−1)a = 1 · a + (−1)a = (1 + (−1))a = 0 · a = 0 

(−1)a + a = (−1)a + 1 · a = ((−1) + 1)a = 0 · a = 0 

Hence (−1)a is the negative of a; that is, (−1)a = −a. 

B.20. Let D be an integral domain. Show that if ab = ac with a /= 0 then 

b = c. 
Since ab = ac, we have 

ab − ac = 0    and so  a(b − c) = 0 

Since a /= 0, we must have b − c = 0, since D has no zero divisors. 

Hence b = c. 

B.21. Suppose J and K are ideals in a ring R. Prove that J ∩ K is an ideal 

in R. 
Since J and K are ideals, 0 ∈ J and 0 ∈ K. Hence 0 ∈ J ∩ K. Now let a, b ∈ J ∩ K and let r 
∈ R. Then 

a, b ∈ J and a, b ∈ K. Since J and K are ideals, 

a − b, ra, ar ∈ J and a − b, ra, ar ∈ K 

Hence a − b, ra, ar ∈ J ∩ K. Therefore J ∩ K is an ideal. 

B.22. Let J be an ideal in a ring R with an identity element 1. Prove: (a) If 1 ∈ J then J = R; (b) If any 



unit 

u ∈ J then J = R. 

(a) If 1 ∈ J then for any r ∈ R we have r · 1 ∈ R or r ∈ J . Hence J = R. 
(b) If u ∈ J then u−1 · u ∈ J or 1 ∈ J . Hence J = R by part (a). 

B.23. Prove: (a) A finite integral domain D is a field. (b) Zp is a field where p is a prime number. 
(c) (Fermat) If p is prime, then ap ≡ a (mod p) for any integer a. 

(a) Suppose D has n elements, say D = {a1, a2,.. ., an}. Let a be any nonzero element of D. 

Consider the n elements 

aa1, aa2,.. ., an 

Since a /= 0, we have aai = aak implies ai = ak (Problem B.22). Thus the above n elements 
are distinct, and sothey must be a rearrangement of the elements of D. One of them, say 
aak , must equal the identity element 1 of D; that is, aak = 1. Thus ak is the inverse of a. 
Since a was any nonzero element of D, we have that D is a field. 

(b) Recall Zp = {0, 1, 2,.. .,p − 1}. We show that Zp has no zero divisors. zero divisors. Suppose 

a ∗b = 0 in Zp; that is, 0 (mod p). Then p  divides ab.  Since p  is prime, p  divides a  or p  

divides b.  Thus a  ≡ 0 (mod p) or  b ≡ 0 (mod p); that is, a = 0 or b = 0 in Zp. Accordingly, 
Zp has no zero divisors and hence Zp is an integral domain. By part (a), Zp is a field. 

(c) If p divides a, then a ≡ 0 (mod p) and so ap ≡ a ≡ 0 (mod p). Suppose p does not divide 
a, then a may be viewed as a nonzero element of Zp is a field, its nonzero elements form a 

group G under multiplication of order p − 1. By Problem B.45, ap−1 = 1 in Zp. 

In other words, ap−1 ≡ 1 (mod p). Multiplying by a gives ap ≡ a (mod p), and the 
theorem is prove 

B.24. Suppose f(t) = 2t 3 − 3t 2 − 6t − 2. Find all the roots of f(t) knowing that f(t) has a 
rational root. 

The rational roots of f (t ) must be among ±1, ±2, ±1/2. Testing each possible root, we 
get, by synthetic division 

(or dividing by 2t 
+ 1), 

 
 

− 1  . 2 − 3 − 6 − 2 
 

 

Therefore t = −1/2 is a 

root and 

2 

− 1 + 2 + 2 

2 − 4 − 4 + 0 

   

. 



n 1 0 m 1 0 

f (t ) = (t + 1/2)(2t 2 − 4t − 4) = (2t + 1)(t2 − 2t − 2) 

We can now use the quadratic formula on t 2 − 2t − 2 to obtain the following three 
roots of f (t ): 

t = −1/2, t = 1 + 
√

3, t = 1 − 
√

3 

B.25. Let f(t) = t 4 − 3t 3 + 3t 2 + 3t − 20. Find all the roots of f(t) given that t = 1 + 2i is a root. 

Since 1 + 2i is a root, then 1 − 2i is a root and c(t) = t 2 − 2t + 5 is a factor of f (t ). 

Dividing f (t ) by c(t) we get 

f (t ) = (t2 − 2t + 5)(t2 − t − 4) 

The quadratic formula with t 2 − t − 4 gives us the other roots of f (t ). That is, the four 
roots of f (t ) follow: 

t = 1 + 2i, t = 1 − 2i, t  = (1 + 
√

17)/2, t = (1 − 
√

17)/2 

B.26. Let K = Z8. Find all roots of f(t) = t 2 + 6t . 

Here Z8 = {0, 1, 2,.. ., 7}. Substitute each element of Z8 into f (t ) 

to obtain: 

f (0) = 0, f (2) = 0, f (4) = 0, f (6) = 0 

Then f (t ) has four roots, t = 0, 2, 4, 6. (Theorem B.21 does not hold here since K is not a 

field.) 

B.27. Suppose f(t) is a real polynomial with odd degree n. Show that f(t) has a real root. 

The complex (nonreal) roots come in pairs. Since f (t ) has an odd number n of roots 

(counting multiplicity), 

f (t ) must have at least one real root. 

 
B.28. Prove Theorem B.15 (Euclidean Division Algorithm): Let f(t) and g(t) be polynomials over a 

field K 

with g(t) /= 0. Then there exist polynomials q(t) and r(t) such that 

f(t) = q(t)g(t) + r(t) 

where either r(t) ≡ 0 or deg(r) < deg(g). 

If f (t ) = 0 or if deg(f ) < deg(g), then we have the required representation f (t ) = 
0g(t) + f (t ). Now suppose deg(f ) ≥ deg(g), say 

f (t ) = a tn + ··· + a t + a and g(t) = b tm + ··· + b t + b 



= + ≡ 

f (t ) = 
Σ

q (t) + 
an tn−m

Σ
g(t) + r(t) 

= 

= = + · · ·  + + = 

where an, bm /= 0 and n > m. We form the 

polynomial 

f (t) = f (t ) − 
an tn−mg(t) (1)  

 1 
m 

(This is the first subtraction step in “long division.”) Then deg(f1) < deg(f ). By induction, 

there exist polynomials q1(t) and r(t) such that f1(t) q1(t)g(t)  r(t) where either r(t) 0 or 

deg(r) < deg(g). Substituting this into (1) and solving for f (t ), we get 

 
bm 

which is the desired representation. 

B.29. Prove Theorem B.18: Suppose f(t) is a polynomial over a field K, and deg(f ) n. Then f(t) 

has at most n roots. 

The proof is by induction on n. If n = 1, then f (t ) = at + b and f (t ) has the unique root 
t = −b/a. Suppose 

n > 1. If f (t ) has no roots, then the theorem is true. Suppose a ∈ K is a root of f (t ). Then 

f (t ) = (t − a)g(t) (1) 

where deg(g) = n − 1. We claim that any other root of f (t ) must also be a root of g(t). 

Suppose b /= a is another root of f (t ). Substituting t = b in (1) yields 0 = f (b) = (b − 

a)g(b). 

Since K has no zero divisors and b − a /= 0, we must have g(b) = 0. By induction, g(t) has at 
most n − 1 roots. Thus 

f (t ) has at most n − 1 roots other than a. Thus f (t ) has at most n roots. 

B.30. Prove Theorem B.19: Suppose a rational number p/q (reduced to lowest terms) is a root of the 
polynomial 

f(t) = antn + ··· + a1t + a0 

where all the coefficients an,.. ., a1, a0 are integers. Then p divides the constant term a0 and 

q divides the leading coefficients an. In particular, if c = p/q is an integer, then c divides the 
constant term a0. 

Substitute t p/q  into f (t ) 0 to obtain an(p/q)n a1(p/q) a0 0. Multiply both sides 

of the equation by qn to obtain 

anpn + an−1pn−1q + an−2pn−2q2 + ··· + a1pqn−1 + a0qn = 0 (1) 

b 

1 



[ ] 
[ ] 

[ ] 

∈ [ ] · · ·   

Since p divides all of the first n terms of (1), p must divide the last term a0qn. Assuming p and 

q are relatively prime, p divides a0. Similarly, q divides the last n terms of (1), hence q divides 

the first term anpn. Since p and q are relatively prime, q divides an. 

B.31. Prove Theorem B.20:  The ring K  t   of polynomials over a field K is a principal ideal domain 

(PID).    If J is an ideal in K t , then there exists a unique monic polynomial d which generates J 

, that is, every polynomial f in J is a multiple of d. 

Let d be a polynomial of lowest degree in J . Since we can multiply d by a nonzero scalar 
and still remain in J , we can assume without loss in generality that d is a monic polynomial 
(leading coefficient equal 1).  Now suppose f  ∈ J .  By the division algorithm there exist 
polynomials q  and r  such that f  = qd + r  where either r  ≡ 0 or deg(r) < deg(d). Now f, d 
∈ J  implies qd ∈ J  and hence r = f − qd ∈ J . But d is a polynomial of lowest degree in J . 
Accordingly, r ≡ 0 and f  = qd, that is, d divides f. It remains to show that d is unique. If dJ is 
another monic polynomial which generates J , then d  divides dJ  and dJ  divides d.  This implies 
that d  = dJ, because d  and dJ  are monic. Thus the theorem is proved. 

B.32. Prove Theorem B.21: Let f and g be polynomials in K t , not both the zero polynomial. Then there 

exists a unique monic polynomial d such that: (i) d divides both f and g. (ii) If dJ divides f and g, 

then dJ divides d. 

The set I  = {mf  + ng | m, n ∈ K[t ]} is an ideal.  Let d  be the monic polynomial which 

generates I .  Note f, g ∈ I ; hence d divides f and g. Now suppose dJ divides f and g. Let J be 

the ideal generated by dJ. Then f, g ∈ J and hence I  ⊆ J .  Accordingly, d  ∈ J  and so dJ  divides 
d as claimed.  It remains to show that d is unique.  If d1  is another (monic) greatest common 

divisor of f and g, then d  divides d1  and d1  divides d.  This implies that d  = d1 because d 

and d1  are monic. Thus the theorem is proved. 

B.33. Prove Corollary B.22: Let d be the greatest common divisor of f and g. Then there exist 

polynomials m and n such that d = mf + ng. In particular, if f and g are relatively prime, 

then there exist polynomials m and n such that mf + ng = 1. 

From the proof of Theorem B.21 in Problem B.34, the greatest common divisor d 

generates the ideal 

I = {mf + ng | m, n ∈ K[t ]} . Thus there exist polynomials m and n such that d = mf 

+ ng. 

B.34. Prove Lemma B.23: Suppose p ∈ K[t ] is irreducible.  If p divides the product fg of 
polynomials f, g K t , then p divides f or p divides g. More generally, if p divides the product 
f1f2 fn of n polynomials, then p divides one of them. 
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Suppose p divides fg but not f. Since p is irreducible, the polynomials f and p must then 

be relatively prime. Thus there exist polynomials m, n ∈ K[t ] such that mf + np = 1. 

Multiplying this equation by g, we obtain mfg + npg = g. But p divides fg and so p 

divides mfg. Also, p divides npg. Therefore, p divides the sum g = mfg + npg. 

Now suppose p divides f1f2 ··· fn. If p divides f1, then we are through. If not, then 

by the above result p divides the product f2 ··· fn. By induction on n, p divides one of the 

polynomials in the product f2 ··· fn. Thus the lemma is proved. 

 

 

 

Boolean Algebra 

                                        BASIC DEFINITIONS 

Let B be a nonempty set with two binary operations and   , a unary operation J, and two distinct elements 

0 and 1. Then B is called a Boolean algebra if the following axioms hold where a, b, c are any elements in B: 

[B1] Commutative laws: 
(1a)    a b b a (1b) a b b a 

[B2] Distributive laws: 
(2a)    a (b   c) (a b) (a c) (2b) a (b c) (a b) (a c) 

[B3] Identity laws: 
(3a)    a 0 a (3b) a 1 a 

[B4] Complement laws: 

(4a)    a + aJ = 1 (4b) a ∗ aJ = 0 

We will sometimes designate a Boolean algebra by  B,    ,   ,
J 
, 0, 1  when we want to emphasize its six parts. 

We say 0 is the zero element, l, is the unit element, and aJ is the complement of a. We will usually drop the symbol 

and use juxtaposition instead. Then (2b) is written a(b  c)  ab ac which is the familiar algebraic identity 
of rings and fields. However, (2a) becomes a bc (a b)(a  c), which is certainly not a usual identity 

in algebra. 

The  operations     ,    ,  and  J  are  called  sum,  product,  and  complement,  respectively.  We  adopt  the  usual 

convention that, unless we are guided by parentheses, J  has precedence over   , and     has precedence over    . 
For example, 

a + b ∗ c means a + (b ∗ c) and not (a + b) ∗ c; a ∗ bJ means a ∗ (bJ) and not (a ∗ b)J 

Of course when a + b ∗ c is written a + bc then the meaning is clear. 

EXAMPLE 1 

(a)  Let B = {0, 1}, the set of bits (binary digits), with the binary operations of + and ∗ and the unary operation J 

defined by Fig. 15-1. Then B is a Boolean algebra. (Note J simply changes the bit, i.e., 1J = 0 and 0J = 1.) 
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Fig. 15-1 

 

 

(b)  Let Bn       B     B B (n factors) where the operations of    ,   , and J are defined componentwise using 

Fig. 15-1. For notational convenience, we write the elements of Bn as n-bit sequences without commas, e.g., 

x = 110011 and y = 111000 belong to Bn. Hence 

x + y = 111011, x ∗ y = 110000, x J = 001100 

Then Bn  is a Boolean algebra. Here 0 000 0 is the zero element, and 1 111 1 is the unit element. 

We note that Bn has 2n elements. 
 

(c)  Let D70  = {1, 2, 5, 7, 10, 14, 35, 70}, the divisors of 70. Define +, ∗, and J on D70  by 

a + b = lcm(a, b), a ∗ b = gcd(a, b), aJ = 
70 

Then D70  is a Boolean algebra with 1 the zero element and 70 the unit 

element. 

(d) Let C be a collection of sets closed under the set operations of union, intersection, and complement. Then C 

is a Boolean algebra with the empty set Ø as the zero element and the universal set U as the unit element. 

 
 

Subalgebras, Isomorphic Boolean Algebras 

Suppose C  is a nonempty subset of a Boolean algebra B. We say C  is a subalgebra of B  if C  itself is a 
Boolean algebra (with respect to the operations of B). We note that C is a subalgebra of B if and only if C is 

closed under the three operations of B, i.e.,    ,   , and J. For example,   1, 2, 35, 70   is a subalgebra of D70  in 

Example 15.1(c). 

Two Boolean algebras B and B J are said to be isomorphic if there is a one-to-one correspondence f   B       BJ 

which preserves the three operations, i.e., such that, for any elements, a, b in B, 
 

f (a + b) = f (a) + f (b), f (a ∗ b) = f (a) ∗ f (b)    and f (aJ) = f (a)J 

 
15.1 DUALITY 

The dual of any statement in a Boolean algebra B is the statement obtained by interchanging the operations 

+ and ∗, and interchanging their identity elements 0 and 1 in the original statement. For example, the dual of 

(1 + a) ∗ (b + 0) = b is   (0 ∗ a) + (b ∗ 1) = b 

Observe the symmetry in the axioms of a Boolean algebra B. That is, the dual of the set of axioms of B is the 

same as the original set of axioms. Accordingly, the important principle of duality holds in B. Namely, 

Theorem 15.1 (Principle of Duality): The dual of any theorem in a Boolean algebra is also a theorem. 

In other words, if any statement is a consequence of the axioms of a Boolean algebra, then the dual is also a 

consequence of those axioms since the dual statement can be proven by using the dual of each step of the proof 

of the original statement. 

15.2 BASIC THEOREMS 
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Using the axioms [B1] through [B4], we prove (Problem 15.5) the following theorem. 

Theorem 15.2: Let a, b, c be any elements in a Boolean algebra B. 

(i) Idempotent laws: 
(5a)    a + a = a (5b) a ∗ a = a 

(ii) Boundedness laws: 
(6a)    a + 1 = 1 (6b) a ∗ 0 = 0 

(iii) Absorption laws: 
(7a)   a + (a ∗ b) = a (7b) a ∗ (a + b) = a 

(iv) Associative laws: 

(8a) (a + b) + c = a + (b + c) (8b) (a ∗ b) ∗ c = a ∗ (b ∗ c) 

Theorem 15.2 and our axioms still do not contain all the properties of sets listed in Table 1-1. The next two 

theorems give us the remaining properties. 

Theorem 15.3: Let a be any element of a Boolean algebra B. 

(i) (Uniqueness of Complement) If a + x = 1 and a ∗ x = 0, then x = aJ. 

(ii) (Involution law) (aJ)J = a. (iii) 

(9a) 0J = 1. (9b) 1J = 0. 

Theorem 15.4 (DeMorgan’s laws):  (10a)    (a + b)J = aJ ∗ bJ. (10b)    (a ∗ b)J = aJ + bJ. 

We prove these theorems in Problems 15.6 and 15.7. 

 
15.3 BOOLEAN ALGEBRAS AS LATTICES 

By Theorem 15.2 and axiom B1 , every Boolean algebra B satisfies the associative, commutative, and 

absorption laws and hence is a lattice where  and  are the join and meet operations, respectively. With respect to 
this lattice, a   1   1 implies a   1 and a   0   0 implies 0   a, for any element a   B. Thus B is a bounded lattice. 
Furthermore, axioms B2 and B4 show that B is also distributive and complemented. Conversely, every bounded, 

distributive, and complemented lattice L satisfies the axioms B1 through B4 . Accordingly, we have the following 

 
Alternate Definition: A Boolean algebra B is a bounded, distributive and complemented lattice. 

Since a Boolean algebra B is a lattice, it has a natural partial ordering (and so its diagram can be drawn). 

Recall (Chapter 14) that we define a    b  when the equivalent conditions a     b     b  and a     b     a  hold.   Since 

we are in a Boolean algebra, we can actually say much more. 

Theorem 15.5:  The following are equivalent in a Boolean algebra: 

(1)    a + b = b, (2)    a ∗ b = a, (3)    aJ + b = 1, (4)    a ∗ bJ = 0 

Thus in a Boolean alegbra we can write a ≤ b whenever any of the above four conditions is known to be true. 

 
EXAMPLE 2 

 
(a) Consider a Boolean algebra of sets. Then set A precedes set B if A is a subset of B. Theorem 15.4 states 

that if A ⊆ B then the following conditions hold: 

(1) A ∪ B = B (2)A ∩ B = A   (3) Ac ∪ B = U (4)A ∩ Bc = Ø 
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(b) Consider the Boolean algebra D70. Then a precedes b if a divides b. In such a case, lcm(a, b) = b and 

gcd(a, b) = a. For example, let a = 2 and b = 14. Then the following conditions hold: 

(1)    lcm(2, 14) = 14.    (3)    lcm(2J, 14) = lcm(35, 14) = 70. 

(2)    gcd(2, 14) = 2. (4)    gcd(2, 14J) = gcd(2, 5) = 1. 

15.4 REPRESENTATION THEOREM 

Let B be a finite Boolean algebra. Recall (Section 14.10) that an element a in B is an atom if a immediately 

succeeds 0, that is if 0 a. Let A be the set of atoms of B and let P (A) be the Boolean algebra of all subsets of the 

set A of atoms. By Theorem 14.8, each x     0 in B  can be expressed uniquely (except for order) as the sum ( 

join) of atoms, i.e., elements of A. Say, 

x = a1 + a2 + · · ·  + ar 

is such a representation. Consider the function f : B → P (A) defined by 

f(x) = {a1, a2,..., ar } 

The mapping is well defined since the representation is unique. 

Theorem 15.6: The above mapping f : B → P (A) is an isomorphism. 

Thus we see the intimate relationship between set theory and abstract Boolean algebras in the sense that 

every finite Boolean algebra is structurally the same as a Boolean algebra of sets. 

If a set A has n elements, then its power set P (A) has 2n elements. Thus the above theorem gives us our 

next result. 

Corollary 15.7: A finite Boolean algebra has 2n elements for some positive integer n. 

 

 
EXAMPLE 15.3 Consider the Boolean algebra D70 1, 2, 5 , . . . ,  70 whose diagram is given in Fig. 15-2(a). Note 

that A     2, 5, 7   is the set of atoms of D70. The following is the unique representation of each nonatom by atoms: 

10 = 2 ∨ 5, 14 = 2 ∨ 7, 35 = 5 ∨ 7, 70 = 2 ∨ 5 ∨ 7 

Figure 15-2(b) gives the diagram of the Boolean algebra of the power set P (A) of the set A of atoms. Observe 

that the two diagrams are structurally the same. 

 

 

 

 

 

 

 

 

 
 

 

Fig. 15-2 

 

 
15.5 SUM-OF-PRODUCTS FORM FOR SETS 

This section motivates the concept of the sum-of-products form in Boolean algebra by an example of set 

theory. Consider the Venn diagram in Fig. 15-3 of three sets A, B, and C. Observe that these sets partition the 
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Fig. 15-3 

 

rectangle (universal set) into eight numbered sets which can be represented as follows: 

(1) A ∩ B ∩ C (3)    A ∩ Bc ∩ C (5)    A ∩ Bc ∩ Cc (7)    Ac  ∩ Bc ∩ C 

(2) A ∩ B ∩ Cc (4)    Ac  ∩ B ∩ C (6)    Ac  ∩ B ∩ Cc (8)    Ac  ∩ Bc ∩ Cc 

Each of these eight sets is of the form A∗ ∩ B∗ ∩ C∗ where: 

A∗ = A or Ac, B∗ = B or Bc, C∗ = C or Cc 

Consider any nonempty set expression E involving the sets A, B, and C, say, 

E = [(A ∩ Bc)c ∪ (Ac ∩ Cc)]∩ [(Bc ∪ C)c ∩ (A ∪ Cc)] 

Then E will represent some area in Fig. 15-3 and hence will uniquely equal the union of one or more of the eight 

sets. 

Suppose we now interpret a union as a sum and an intersection as a product. Then the above eight sets are 

products, and the unique representation of E will be a sum (union) of products. This unique representation of E 

is the same as the complete sum-of-products expansion in Boolean algebras which we discuss below. 

 
15.6 SUM-OF-PRODUCTS FORM FOR BOOLEAN ALGEBRAS 

Consider a set of variables (or letters or symbols), say x1, x2, . . . , xn. A Boolean expression E  in these 
variables, sometimes written E(x1, . . . , xn), is any variable or any expression built up from the variables using 

the Boolean operations    ,   , and J. (Naturally, the expression E must be well-formed, that is, where     and    are 

used as binary operations, and J is used as a unary operation.) For example, 

E1  = (x + y Jz)J + (xyzJ + x Jy)J and E2  = ((xy JzJ + y)J + x Jz)J 

are Boolean expressions in x, y, and z. 

A literal is a variable or complemented variable, such as x, xJ, y, yJ, and so on. A fundamental product is a 

literal or a product of two or more literals in which no two literals involve the same variable. Thus 

xzJ,     xy Jz,     x,     y J,     x Jyz 

are fundamental products, but xyxJz and xyzy are not. Note that any product of literals can be reduced to 

either 0 or a fundamental product, e.g., xyxJz      0 since xxJ      0 (complement law), and xyzy      xyz since yy      
y (idempotent law). 

A fundamental product P1  is said to be contained in (or included in) another fundamental product P2  if the 

literals of P1  are also literals of P2. For example, xJz is contained in xJyz, but xJz is not contained in xyJz since 
xJ is not a literal of xyJz. Observe that if P1  is contained in P2, say P2  = P1 ∗ Q, then, by the absorption law, 

P1 + P2  = P1 + P1 ∗ Q = P1 

Thus, for instance, xJz + xJyz = xJz. 
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Definition  Boolean expression E is called a sum-of-products expression if E is a fundamental product or the 

sum of two or more fundamental products none of which is contained in another. 

Definition 15.2: Let E be any Boolean expression. A sum-of-products form of E is an equivalent Boolean sum-

of-products expression. 

 
EXAMPLE .4 Consider the expressions 

E1  = xzJ + y Jz + xyzJ and E2  = xzJ + x JyzJ + xy Jz 

Although the first expression E1  is a sum of products, it is not a sum-of-products expression. Specifically, 

the product xzJ is contained in the product xyzJ. However, by the absorption law, E1  can be expressed as 

E1  = xzJ + y Jz + xyzJ = xzJ + xyzJ + y Jz = xzJ + y Jz 

This yields a sum-of-products form for E1. The second expression E2 is already a sum-of-products expression. 

 
 

 
EXAMPLE 5 Suppose Algorithm 15.1 is applied to the following Boolean expression: 

E = ((xy)Jz)J((x J + z)(y J + zJ))J 

Step 1. Using DeMorgan’s laws and involution, we obtain 

E = (xy JJ + zJ)((x J + z)J + (y J + zJ)J) = (xy + zJ)(xzJ + yz) E 

now consists only of sums and products of literals. 

Step 2. Using the distributive laws, we obtain 

E = xyxzJ + xyyz + xzJzJ + yzzJ 

E now is a sum of products. 

Step 3. Using the commutative, idempotent, and complement laws, we obtain 

E = xyzJ + xyz + xzJ + 0 

Each term in E is a fundamental product or 0. 

Step 4.  The product xzJ is contained in xyzJ; hence, by the absorption law, 

xzJ + (xzJy) = xzJ 

Thus we may delete xyzJ from the sum. Also, by the identity law for 0, we may delete 0 from the sum. 

Accordingly, 

E = xyz + xzJ 

E is now represented by a sum-of-products expression. 

 

 
Complete Sum-of-Products Forms 

A Boolean expression E E(x1, x2 , . . . ,  xn) is said to be a complete sum-of-products expression if E is a sum-

of-products expression where each product P involves all the n variables. Such a fundamental product P which 

involves all the variables is called a minterm, and there is a maximum of 2n such products for n variables. The 
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following theorem applies. 

Theorem  :   Every  nonzero  Boolean expression  E E(x1, x2 , . . . ,  xn) is equivalent to a complete 
sum-of-products expression and such a representation is unique. 

The above unique representation of E is called the complete sum-of-products form of E. Algorithm 15-1  in 

Fig. 15-4 tells us how to transform E into a sum-of-products form. Figure 15-5 contains an algorithm which 

transforms a sum-of-products form into a complete sum-of-products form. 

 

 
 

 

Fig. 15-5 

 
 

EXAMPLE .6  Express E(x, y, z) = x(yJz)J into its complete sum-of-products form. 

(a) Apply Algorithm 15.1 to E so E is represented by a sum-of-products expression: 

E = x(y Jz)J = x(y + zJ) = xy + xzJ 

(b) Now apply Algorithm 15.2 to obtain: 

E = xy(z + zJ) + xzJ(y + y J) = xyz + xyzJ + xyzJ + xy JzJ 

= xyz + xyzJ + xy JzJ 

Now E is reprsented by its complete sum-of-products form. 

15.7 MINIMAL BOOLEAN EXPRESSIONS, PRIME IMPLICANTS 

There are many ways of representing the same Boolean expression E. Here we define and investigate a 

minimal sum-of-products form for E. We must also define and investigate prime implicants of E since the 

minimal sum-of-products involves such prime implicants. Other minimal forms exist, but their investigation lies 

beyond the scope of this text. 

 
Minimal Sum-of-Products 

Consider a Boolean sum-of-products expression E. Let EL denote the number of literals in E (counted 

according to multiplicity), and let ES denote the number of summands in E. For instance, suppose 

E = xyzJ + x Jy Jt + xy JzJt + x Jyzt 

Then EL 3 3 4 4 14 and ES 4. 

Suppose E and F are equivalent Boolean sum-of-products expressions. We say E is simpler than F if: 

(i) EL  < FL  and ES ≤ FL, or (ii) EL ≤ FL and ES < FL 

We say E is minimal if there is no equivalent sum-of-products expression which is simpler than E. We note that 

there can be more than one equivalent minimal sum-of-products expressions. 
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Prime Implicants 

A fundamental product P is called a prime implicant of a Boolean expression E if 

P + E = E 

but no other fundamental product contained in P has this property. For instance, suppose 

E = xy J + xyzJ + x JyzJ 

One can show (Problem 15.15) that: 

xzJ + E = E but x + E /= E and zJ + E /= E 

Thus xzJ is a prime implicant of E. 

The following theorem applies. 

Theorem 15.9: A minimal sum-of-products form for a Boolean expression E is a sum of prime implicants of E. 

The following subsections give a method for finding the prime implicants of E based on the notion of the 

consensus of fundamental products. This method can then be used to find a minimal sum-of-products form for E. 

Section 15.12 gives a geometric method for finding such prime implicants. 

 
Consensus of Fundamental Products 

Let P1  and P2  be fundamental products such that exactly one variable, say xk , appears uncomplemented 
in one of P1  and P2  and complemented in the other. Then the consensus of P1  and P2  is the product (without 

repetitions) of the literals of P1 and the literals of P2 after xk  and xk
J  are deleted. (We do not define the consensus 

of P1       x and P2       x
J.) 

The following lemma (proved in Problem 15.19) applies. 

Lemma 15.10: Suppose Q is the consensus of P1 and P2. Then P1 + P2 + Q = P1 + P2. 

EXAMPLE .7 Find the consensus Q of P1 and P2 where: 

(a) P1 = xyzJs and P2 = xyJt . 

Delete y and yJ and then multiply the literals of P1  and P2  (without repetition) to obtain Q = xzJst . 

(b) P1 = xyJ and P2 = y. 

Deleting y and yJ yields Q = x. 

(c) P1 = xJyz and P2 = xJyt. 

No variable appears uncomplemented in one of the products and complemented in the other. Hence P1 and 

P2 have no consensus. 

(d) P1 = xJyz and P2 = xyzJ. 

Each of x and z appear complemented in one of the products and uncomplemented in the other. Hence P1 

and P2 have no consensus. 

 
Consensus Method for Finding Prime Implicants 

Figure 15-6 contains an algorithm, called the consensus method, which is used to find the prime implicants 

of a Boolean expression E. The following theorem gives the basic property of this algorithm. 
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Theorem: The consensus method will eventually stop, and then E will be the sum of its prime implicants. 

 

 

 
 

 
EXAMPLE .8  Let E = xyz + xJzJ + xyzJ + xJyJz + xJyzJ. Then: 

E = xyz + xJzJ + xyzJ + xJyJz (xJyzJ includes xJzJ) 

= xyz + xJyJ + xyzJ + xJyJz + xy (consensus of xyz and xyzJ) 

= xJzJ + xJyJz + xy (xyz and xyzJ include xy) 

= xJzJ + xJyJz + xy + xJyJ (consensus of xJzJ and xJyJz) 

= xJzJ + xy + xJyJ (xJyJz includes xJyJ) 

= xJzJ + xy + xJyJ + yzJ (consensus of xJzJ and xy) 

Now neither step in the consensus method will change E. Thus E is the sum of its prime implicants, which appear 

in the last line, that is, xJzJ,  xy,  xJyJ,  and yzJ. 

Boolean Functions 

Let E be a Boolean expression with n variables x1, x2 , . . . ,  xn. The entire discussion above can also be 

applied to E where now the special sequences are assigned to the variables x1, x2 , . . . ,  xn instead of the input 

devices A1, A2 , . . . ,  An. The truth table T    T (E) of E is defined in the same way as the truth table T     T (L) for 

a logic circuit L. For example, the Boolean expression 

E = xyz + xy Jz + x Jy 

which is analogous to the logic circuit L in Example 15.12, yields the truth table 

T (00001111, 00110011, 01010101) = 00110101 

or simply T (E) = 00110101, where we assume the input consists of the special sequences. 

Remark:   The truth table for a Boolean expression E   E(x1, x2 , . . . ,  xn) with n variables may also be viewed as 

a “Boolean” function from Bn into B. (The Boolean algebras Bn and B 0, 1 are defined in Example 15.1.) That 

is, each element in Bn is a list of n bits which when assigned to the list of variables in E produces an element in B. 

The truth table T (E) of E is simply the graph of the function. 

  

 
EXAMPLE  

 

(a) Consider Boolean expressions E E(x, y, z) with three variables. The eight minterms (fundamental prod- ucts 

involving all three variables) are as follows: 

xyz, xyzJ, xy Jz, x Jyz, xy JzJ, x JyzJ, x Jy JzJ 

The truth tables for these minterms (using the special sequences for x, y, z) follow: 

xyz = 00000001, xyzJ = 00000010, xy Jz = 00000100, x Jyz = 00001000 

xy JzJ = 00010000, x JyzJ = 00100000, x Jy Jz = 01000000, x Jy JzJ = 10000000 

Observe that each minterm assumes the value 1 in only one of the eight positions. 
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(b) Consider the Boolean expression E xyzJ xJyz  xJyJz. Note that E  is a complete sum-of-products  expression 

containing three minterms. Accordingly, the truth table T T (E) for E, using the special sequences for x, y, 

z, can be easily obtained from the sequences in part (a). Specifically, the truth table T (E) will contain exactly 

three 1’s in the same positions as the 1’s in the three minterms in E. Thus 

T (00001111, 00110011, 01010101) = 01001010 

or simply T (E) = 01001010. 

 

 

Solved Problems 

 
BOOLEAN ALGEBRAS 

15.1. Write the dual of each Boolean equation: (a) (a ∗ 1) ∗ (0 + aJ) = 0; (b) a + aJb = a + b. 

(a) To obtain the dual equation, interchange + and ∗, and interchange 0 and 1. Thus 

(a + 0) + (1 ∗ aJ) = 1 

(b) First write the equation using    to obtain a (aJ    b) a b. Then the dual is a    (aJ b) a b, which can 

be written as 

a(aJ + b) = ab 

15.2. Recall (Chapter 14) that the set Dm of divisors of m is a bounded, distributive lattice with 

a + b = a ∨ b = lcm(a, b)   and a ∗ b = a ∧ b = gcd(a, b). 

(a) Show that Dm is a Boolean algebra if m is square free, i.e., if m is a product of distinct primes. 

(b) Find the atoms of Dm. 

(a) We need only show that Dm is complemented. Let x be in Dm and let xJ = m/x. Since m is a product of distinct 

primes, x and xJ have different prime divisors. Hence x ∗ xJ = gcd(x, xJ) = 1 and x + xJ = 1cm(x, xJ) = m. 
Recall that 1 is the zero element (lower bound) of Dm and that m is the identity element (upper bound) of Dm. 

Thus xJ is a complement of x, and so Dm is a Boolean algebra. 

(b) The atoms of Dm are the prime divisors of m. 

15.3. Consider the Boolean algebra D210. 

(a) List its elements and draw its diagram. 

(b) Find the set A of atoms. 

(c) Find two subalgebras with eight elements. 

(d) Is X = {1, 2, 6, 210} a sublattice of D210? A subalgebra? 

(e) Is Y = {1, 2, 3, 6} a sublattice of D210? A subalgebra? 

(a) The divisors of 210 are 1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, and 210. The diagram of D210 appears 

in Fig. 15-25. 

(b) A = {2, 3, 5, 7}, the set of prime divisors of 210. 



   
 

(c) B = {1, 2, 3, 35, 6, 70, 105, 210} and C = {1, 5, 6, 7, 30, 35, 42, 210} are subalgebras of D210. 

(d) X  is a sublattice since it is linearly ordered. However, X  is not a subalgebra since 35 is the complement of        2 
in D210 but 35 does not belong to X. (In fact, no Boolean algebra with more than two elements is linearly 

ordered.) 

(e) Y is a sublattice of D210 since it is closed under + and ∗. However, Y is not a subalgebra of D210 since it is not 

closed under complements in D210, e.g., 35 = 2J does not belong to Y . (We note that Y itself is a Boolean algebra; 

in fact, Y = D6.) 



   
 

determines the subalgebra C above). There 

are and so D210 has six eight-element 

subalgebras. 
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2 

= 6 ways to choose s1 and s2 from the four atoms of D210 

 
 

Fig. 15-25 

 

15.4. Find the number of subalgebras of D210. 

A subalgebra of D210 must contain two, four, eight or sixteen elements. 

(i) There can be only one two-element subalgebra which consists of the upper bound 210 and lower bound 1, 
i.e., 

{1, 210}. 

(ii) Since D210 contains sixteen elements, the only sixteen-element subalgebra is D210 itself. 

(iii) Any four-element subalgebra is of the form {1,x,xJ, 210}, i.e., consists of the upper and lower bounds and a 
nonbound element and its complement. There are fourteen nonbound elements in D210 and so there are 14/2 
= 7 pairs {x, xJ}. Thus D210 has seven four-element subalgebras. 

(iv) Any eight-element subalgebra S will itself contain three atoms s1, s2, s3. We can choose s1 and s2 to be any two 
of the four atoms of D210 and then s3 must be the product of the other two atoms, e.g., we can let s1 = 2, s2 = 

3, s3 = 5 · 7 = 35 (which determines the subalgebra. BΣ above), or we can let s1 = 5, s2 = 7, s3 = 2 · 3 = 6 (which 

 

 

Accordingly, D210 has 1 + 1 + 7 + 6 = 15 subalgebras. 

15.5. Prove Theorem 15.2: Let a, b, c be any element in a Boolean algebra B. 

(i) Idempotent laws: 

(5a)    a + a = a (5b) a ∗ a = a 

(ii) Boundedness laws: 

(6a)    a + 1 = 1 (6b) a ∗ 0 = 0 

(iii) Absorption Laws: 

(7a)   a + (a ∗ b) = a (7b) a ∗ (a + b) = a 

(iv) Associative Laws: 

(8a)    (a + b) + c = a + (b + c) (8b) (a ∗ b) ∗ c = a ∗ (b ∗ c) 

(5b)    a = a ∗ 1 = a ∗ (a + aJ) = (a ∗ a) + (a ∗ aJ) = (a ∗ a) + 0 = a ∗ a (5a)    

Follows from (5b) and duality. 

(6b)    a ∗ 0 = (a ∗ 0) + 0 = (a ∗ 0) + (a ∗ aJ) = a ∗ (0 + aJ) = a ∗ (aJ + 0) = a ∗ aJ  = 0 

(6a)    Follows from (6b) and duality. 

(7b) a ∗ (a + b) = (a + 0) ∗ (a + b) = a + (0 ∗ b) = a + (b ∗ 0) = a + 0 = a (7a) 

Follows from (7b) and duality. 
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(8b)   Let L (a     b)    c and R a     (b    c). We  need to prove that L R. We  first prove that a L a R. 

Using the absorption laws in the last two steps, 

a + L = a + ((a ∗ b) ∗ c) = (a + (a ∗ b)) ∗ (a + c) = a ∗ (a + c) = a 



   
 

Also, using the absorption law in the last step, 

a + R = a + (a ∗ (b ∗ c)) = (a + a) ∗ (a + (b ∗ c)) = a ∗ (a + (b ∗ c)) = a 

Thus a + L = a + R. Next we show that aJ + L = aJ + R. We have, 

aJ + L = aJ + ((a ∗ b) ∗ c) = (aJ + (a ∗ b)) ∗ (aJ + c) 

= ((aJ + a) ∗ (aJ + b)) ∗ (aJ + c) = (1 ∗ (aJ + b)) ∗ (aJ + c) 

= (aJ + b) ∗ (aJ + c) = aJ + (b ∗ c) 

Also, 

aJ + R = aJ + (a ∗ (b ∗ c)) = (aJ + a) ∗ (aJ + (b ∗ c)) 

= 1 ∗ (aJ + (b ∗ c)) = aJ + (b ∗ c) 

Thus aJ + L = aJ + R. Consequently, 

L = 0 + L = (a ∗ aJ) + L = (a + L) ∗ (aJ + L) = (a + R) ∗ (aJ + R) 

= (a ∗ aJ) + R = 0 + R = R 

(8a) Follows from (8b) and duality. 

 
15.6. Prove Theorem 15.3: Let a be any element of a Boolean algebra B. 

(i) (Uniqueness of Complement) If a + x = 1 and a ∗ x = 0, then x = aJ. 

(ii) (Involution Law) (aJ)J = a 

(iii)  (9a)    0J = 1; (9b)    1J = 0. 

(i) We have: 

aJ = aJ + 0 = aJ + (a ∗ x) = (aJ + a) ∗ (aJ + x) = 1 ∗ (aJ + x) = aJ + x 

Also, 

x = x + 0 = x + (a ∗ aJ) = (x + a) ∗ (x + aJ) = 1 ∗ (x + aJ) = x + aJ 

Hence x = x + aJ  = aJ + x = aJ. 

(ii) By definition of complement, a + aJ = 1 and a ∗ aJ = 0. By commutativity, aJ  + a  = 1 and aJ  ∗ a  = 0.  By 
uniqueness of complement, a is the complement of aJ, that is, a = (aJ)J. 

(iii) By boundedness law (6a), 0 + 1 = 1, and by identity axiom (3b), 0 ∗ 1 = 0. By uniqueness of complement, 

1 is the complement of 0, that is, 1 = 0J. By duality, 0 = 1J. 

15.7. Prove Theorem 15.4: (DeMorgan’s laws): (10a) (a + b)J = aJ ∗ bJ. (10b) (a ∗ b)J = aJ + bJ. 

(10a)   We need to show that (a + b) + (aJ ∗ bJ) = 1 and (a + b) ∗ (aJ ∗ bJ) = 0; then by uniqueness of complement, 

aJ ∗ bJ  = (a + bJ). We have: 

(a + b) + (aJ ∗ bJ) = b + a + (aJ ∗ bJ) = b + (a + aJ) ∗ (a + bJ) 



   
 

= b + 1 ∗ (a + bJ) = b + a + bJ = b + bJ + a = 1 + a = 1 

Also, 

(a + b) ∗ (aJ ∗ bJ) = ((a + b) ∗ aJ) ∗ bJ 

= ((a ∗ aJ) + (b ∗ aJ)) ∗ bJ = (0 + (b ∗ aJ)) ∗ bJ 

= (b ∗ aJ) ∗ bJ = (b ∗ bJ) ∗ aJ = 0 ∗ aJ = 0 

Thus aJ ∗ bJ  = (a + b)J. 

(10b) Principle of duality (Theorem 15.1). 
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15.8. Prove Theorem 15.5: The following are equivalent in a Boolean algebra: 

(1) a + b = b; (2) a ∗ b = a; (3) aJ + b = 1; (4) a ∗ bJ = 0. 

By Theorem 14.4, (1) and (2) are equivalent. We show that (1) and (3) are equivalent. Suppose (1) holds. Then 

aJ + b = aJ + (a + b) = (aJ + a) + b = 1 + b = 1 

Now suppose (3) holds. Then 

a + b = 1 ∗ (a + b) = (aJ + b) ∗ (a + b) = (aJ ∗ a) + b = 0 + b = b 

Thus (1) and (3) are equivalent. 

We next show that (3) and (4) are equivalent. Suppose (3) holds. By DeMorgan’s law and involution, 

0 = 1J = (aJ + bJ)J = aJJ ∗ bJ = a ∗ bJ 

Conversely, if (4) holds then  
1 = 0J = (a ∗ bJ)J = aJ + bJJ = aJ + b 

Thus (3) and (4) are equivalent. Accordingly, all four are equivalent. 

 

15.9. Prove Theorem 15.6: The mapping f B P (A) is an isomorphism where B is a Boolean algebra, P (A) 
is the power set of the set A of atoms, and 

f(x) = {a1, a2,..., an} 

where x = a1 + ··· + an is the unique representation of a as a sum of atoms. 

Recall (Chapter 14) that if the a’s are atoms then a2 = a but a a = 0 for a /= a . Suppose x, y are in B and 

suppose i i i  j i j 

 

 

 

 
where 

x = a1 + · · ·  + ar + b1 + ·· ·  + bs 

y = b1 + ·· ·  + bs + c1 + · · ·  + ct 

 
A = {a1,..., ar , b1,..., bs , c1,..., ct , d1,..., dk } 

is the set of atoms of B. Then 

x + y = a1 + · · ·  + ar + b1 + · · ·  + bs + c1 + · · ·  + ct 

xy = b1 + ·· ·  bs 

Hence 
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,..., bs }∪ {b1,..., bs , c1,..., ct } 

= f (x) ∪ f (y) 

f (xy) = {b1 , . . . ,  bs } 

= {a1,..., ar , b1,..., bs }∩ {b1,..., bs , c1,..., ct } 

= f (x) ∩ f (y) 

y = c1  + · · · + ct  + d1  + · · · + dk . Then x + y = 1 and xy = 0,  and so y = x J 

f (x J) = {c1, . . . , c , d1, . . . , d  } = {a1, . . . , a , b1, . . . , b }c  = (f (x))c 



   
 

∗ + ∗ =   + ∗ + = ∗ 

Since the representation is unique, f is one-to-one and onto. Hence f is a Boolean algebra isomorphism. 

 

Solved Problem 

Q  1Write the dual of each Boolean equation: (a) (a ∗ 1) ∗ (0 + aJ) = 0; (b) a + aJb = a + b. 

(a) To obtain the dual equation, interchange + and ∗, and interchange 0 and 1. Thus 

(a + 0) + (1 ∗ aJ) = 1 

(b) First write the equation using    to obtain a (aJ    b) a b. Then the dual is a    (aJ b) a b, which can 

be written as 

a(aJ + b) = ab 

2 .Recall (Chapter 14) that the set Dm of divisors of m is a bounded, distributive lattice with 

a + b = a ∨ b = lcm(a, b)   and a ∗ b = a ∧ b = gcd(a, b). 

i. Show that Dm is a Boolean algebra if m is square free, i.e., if m is a product of distinct primes. 

ii. Find the atoms of Dm. 

(c) We need only show that Dm is complemented. Let x be in Dm and let xJ = m/x. Since m is a product of distinct 

primes, x and xJ have different prime divisors. Hence x ∗ xJ = gcd(x, xJ) = 1 and x + xJ = 1cm(x, xJ) = m. 
Recall that 1 is the zero element (lower bound) of Dm and that m is the identity element (upper bound) of Dm. 

Thus xJ is a complement of x, and so Dm is a Boolean algebra. 

(d) The atoms of Dm are the prime divisors of m. 

b. Consider the Boolean algebra D210. 

i. List its elements and draw its diagram. 

ii. Find the set A of atoms. 

iii. Find two subalgebras with eight elements. 

iv. Is X = {1, 2, 6, 210} a sublattice of D210? A subalgebra? 

v. Is Y = {1, 2, 3, 6} a sublattice of D210? A subalgebra? 

(a) The divisors of 210 are 1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, and 210. The diagram of D210 appears 

 (b) A = {2, 3, 5, 7}, the set of prime divisors of 210. 

(c) B = {1, 2, 3, 35, 6, 70, 105, 210} and C = {1, 5, 6, 7, 30, 35, 42, 210} are subalgebras of D210. 

(f) X  is a sublattice since it is linearly ordered. However, X  is not a subalgebra since 35 is the complement of        2 
in D210 but 35 does not belong to X. (In fact, no Boolean algebra with more than two elements is linearly 

ordered.) 

(g) Y is a sublattice of D210 since it is closed under + and ∗. However, Y is not a subalgebra of D210 since it is not 

closed under complements in D210, e.g., 35 = 2J does not belong to Y . (We note that Y itself is a Boolean algebra; 

in fact, Y = D6.) 
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Fig. 15-25 

 

c. Find the number of subalgebras of D210. 

A subalgebra of D210 must contain two, four, eight or sixteen elements. 

(v) There can be only one two-element subalgebra which consists of the upper bound 210 and lower bound 1, 
i.e., 

{1, 210}. 

(vi) Since D210 contains sixteen elements, the only sixteen-element subalgebra is D210 itself. 

(vii) Any four-element subalgebra is of the form {1,x,xJ, 210}, i.e., consists of the upper and lower bounds and a 
nonbound element and its complement. There are fourteen nonbound elements in D210 and so there are 14/2 
= 7 pairs {x, xJ}. Thus D210 has seven four-element subalgebras. 

(viii) Any eight-element subalgebra S will itself contain three atoms s1, s2, s3. We can choose s1 and s2 to be any two 
of the four atoms of D210 and then s3 must be the product of the other two atoms, e.g., we can let s1 = 2, s2 = 

3, s3 = 5 · 7 = 35 (which determines the subalgebra. BΣ above), or we can let s1 = 5, s2 = 7, s3 = 2 · 3 = 6 (which 

 

 

Accordingly, D210 has 1 + 1 + 7 + 6 = 15 subalgebras. 

d. Prove Theorem 15.2: Let a, b, c be any element in a Boolean algebra B. 

(v) Idempotent laws: 

(5a)    a + a = a (5b) a ∗ a = a 

(vi) Boundedness laws: 

(6a)    a + 1 = 1 (6b) a ∗ 0 = 0 

(vii) Absorption Laws: 

(7a)   a + (a ∗ b) = a (7b) a ∗ (a + b) = a 

(viii) Associative Laws: 

(8a)    (a + b) + c = a + (b + c) (8b) (a ∗ b) ∗ c = a ∗ (b ∗ c) 

(5b)    a = a ∗ 1 = a ∗ (a + aJ) = (a ∗ a) + (a ∗ aJ) = (a ∗ a) + 0 = a ∗ a (5a)    

Follows from (5b) and duality. 

(6b)    a ∗ 0 = (a ∗ 0) + 0 = (a ∗ 0) + (a ∗ aJ) = a ∗ (0 + aJ) = a ∗ (aJ + 0) = a ∗ aJ  = 0 

(6a)    Follows from (6b) and duality. 

(7b) a ∗ (a + b) = (a + 0) ∗ (a + b) = a + (0 ∗ b) = a + (b ∗ 0) = a + 0 = a (7a) 

Follows from (7b) and duality. 
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(8b)   Let L (a     b)    c and R a     (b    c). We  need to prove that L R. We  first prove that a L a R. 

Using the absorption laws in the last two steps, 

a + L = a + ((a ∗ b) ∗ c) = (a + (a ∗ b)) ∗ (a + c) = a ∗ (a + c) = a 

Also, using the absorption law in the last step, 

a + R = a + (a ∗ (b ∗ c)) = (a + a) ∗ (a + (b ∗ c)) = a ∗ (a + (b ∗ c)) = a 

Thus a + L = a + R. Next we show that aJ + L = aJ + R. We have, 

aJ + L = aJ + ((a ∗ b) ∗ c) = (aJ + (a ∗ b)) ∗ (aJ + c) 

= ((aJ + a) ∗ (aJ + b)) ∗ (aJ + c) = (1 ∗ (aJ + b)) ∗ (aJ + c) 

= (aJ + b) ∗ (aJ + c) = aJ + (b ∗ c) 

Also, 

aJ + R = aJ + (a ∗ (b ∗ c)) = (aJ + a) ∗ (aJ + (b ∗ c)) 

= 1 ∗ (aJ + (b ∗ c)) = aJ + (b ∗ c) 

Thus aJ + L = aJ + R. Consequently, 

L = 0 + L = (a ∗ aJ) + L = (a + L) ∗ (aJ + L) = (a + R) ∗ (aJ + R) 

= (a ∗ aJ) + R = 0 + R = R 

(8a) Follows from (8b) and duality. 

 
e. Prove Theorem 15.3: Let a be any element of a Boolean algebra B. 

(iii) (Uniqueness of Complement) If a + x = 1 and a ∗ x = 0, then x = aJ. 

(iv) (Involution Law) (aJ)J = a 

(iii)  (9a)    0J = 1; (9b)    1J = 0. 

(iv) We have: 

aJ = aJ + 0 = aJ + (a ∗ x) = (aJ + a) ∗ (aJ + x) = 1 ∗ (aJ + x) = aJ + x 

Also, 

x = x + 0 = x + (a ∗ aJ) = (x + a) ∗ (x + aJ) = 1 ∗ (x + aJ) = x + aJ 

Hence x = x + aJ  = aJ + x = aJ. 

(v) By definition of complement, a + aJ = 1 and a ∗ aJ = 0. By commutativity, aJ  + a  = 1 and aJ  ∗ a  = 0.  By 
uniqueness of complement, a is the complement of aJ, that is, a = (aJ)J. 

(vi) By boundedness law (6a), 0 + 1 = 1, and by identity axiom (3b), 0 ∗ 1 = 0. By uniqueness of complement, 

1 is the complement of 0, that is, 1 = 0J. By duality, 0 = 1J. 

f. Prove Theorem 15.4: (DeMorgan’s laws): (10a) (a + b)J = aJ ∗ bJ. (10b) (a ∗ b)J = aJ + bJ. 

(10a)   We need to show that (a + b) + (aJ ∗ bJ) = 1 and (a + b) ∗ (aJ ∗ bJ) = 0; then by uniqueness of complement, 
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aJ ∗ bJ  = (a + bJ). We have: 

(a + b) + (aJ ∗ bJ) = b + a + (aJ ∗ bJ) = b + (a + aJ) ∗ (a + bJ) 

= b + 1 ∗ (a + bJ) = b + a + bJ = b + bJ + a = 1 + a = 1 

Also, 

(a + b) ∗ (aJ ∗ bJ) = ((a + b) ∗ aJ) ∗ bJ 

= ((a ∗ aJ) + (b ∗ aJ)) ∗ bJ = (0 + (b ∗ aJ)) ∗ bJ 

= (b ∗ aJ) ∗ bJ = (b ∗ bJ) ∗ aJ = 0 ∗ aJ = 0 

Thus aJ ∗ bJ  = (a + b)J. 

Prove Theorem : The following are equivalent in a Boolean algebra: 

(1) a + b = b; (2) a ∗ b = a; (3) aJ + b = 1; (4) a ∗ bJ = 0. 

By Theorem 14.4, (1) and (2) are equivalent. We show that (1) and (3) are equivalent. Suppose (1) holds. Then 

aJ + b = aJ + (a + b) = (aJ + a) + b = 1 + b = 1 

Now suppose (3) holds. Then 

a + b = 1 ∗ (a + b) = (aJ + b) ∗ (a + b) = (aJ ∗ a) + b = 0 + b = b 

Thus (1) and (3) are equivalent. 

We next show that (3) and (4) are equivalent. Suppose (3) holds. By DeMorgan’s law and involution, 

0 = 1J = (aJ + bJ)J = aJJ ∗ bJ = a ∗ bJ 

Conversely, if (4) holds then  
1 = 0J = (a ∗ bJ)J = aJ + bJJ = aJ + b 

Thus (3) and (4) are equivalent. Accordingly, all four are equivalent. 

 

g. Prove Theorem 15.6: The mapping f B P (A) is an isomorphism where B is a Boolean algebra, P (A) 
is the power set of the set A of atoms, and 

f(x) = {a1, a2,..., an} 

where x = a1 + ··· + an is the unique representation of a as a sum of atoms. 

Recall (Chapter 14) that if the a’s are atoms then a2 = a but a a = 0 for a /= a . Suppose x, y are in B and 

suppose i i i  j i j 

 

 

 

 
where 

x = a1 + · · ·  + ar + b1 + ·· ·  + bs 

y = b1 + ·· ·  + bs + c1 + · · ·  + ct 

 



   
 

t k r s 

A = {a1,..., ar , b1,..., bs , c1,..., ct , d1,..., dk } 

is the set of atoms of B. Then 

x + y = a1 + · · ·  + ar + b1 + · · ·  + bs + c1 + · · ·  + ct 

xy = b1 + ·· ·  bs 

Hence 

 

 

 

 

 

 

 

 

Let 

Thus 

 
f (x + y) = {a1,..., ar , b1,..., bs , c1,..., ct } 

= {a1,..., ar , b1,..., bs }∪ {b1,..., bs , c1,..., ct } 

= f (x) ∪ f (y) 

f (xy) = {b1 , . . . ,  bs } 

= {a1,..., ar , b1,..., bs }∩ {b1,..., bs , c1,..., ct } 

= f (x) ∩ f (y) 

y = c1  + · · · + ct  + d1  + · · · + dk . Then x + y = 1 and xy = 0,  and so y = x J 

f (x J) = {c1, . . . , c , d1, . . . , d  } = {a1, . . . , a , b1, . . . , b }c  = (f (x))c 

Since the representation is unique, f is one-to-one and onto. Hence f is a Boolean algebra isomorphism. 
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Definition: The is a figure consist of points or nodes called vertices which are connected to each other 

by way of lines called edges. These lines may be directed or undirected. A graph G consists of two 

things: 

(i) A set V = V (G) whose elements are called vertices, points, or nodes of G. 

(ii) A set E = E(G) of unordered pairs of distinct vertices called edges of G. 

We denote such a graph by G(V, E) when we want to emphasize the two parts of G. Vertices u and v 

are said to be adjacent or neighbors if there is an edge e  u, v  . In such a case, u and v   are called the 

endpoints of e, and e is said to connect u and v. Also, the edge e is said to be incident on each of its 

endpoints u and v. Graphs are pictured by diagrams in the plane in a natural way. Specifically, each 

vertex v in V is represented by a dot (or small circle), and each edge e = {v1, v2} is represented by a 

curve which connects its endpoints v1 and v2 For example, Fig. 8-5(a) represents the graph G(V, E) 

where: 

(i) V consists of vertices A, B, C, D. 

 

(ii) E consists of edges e1 = {A, B}, e2 = {B, C}, e3 = {C, D}, e4 = {A, C}, e5 = {B, D}. 

In fact, we will usually denote a graph by drawing its diagram rather than explicitly listing its vertices 

and edges. 

 

 

Fig. 1 

Multigraphs 

Consider the diagram in Fig. 1(b). The edges e4 and e5 are called multiple edges since they connect 

the same endpoints, and the edge e6 is called a loop since its endpoints are the same vertex. Such a 

diagram is called a multigraph; the formal definition of a graph permits neither multiple edges nor 

loops. Thus a graph may be defined to be a multigraph without multiple edges or loops. 

Remark: Some texts use the term graph to include multigraphs and use the term simple graph to 

mean a graph without multiple edges and loops. 



Degree of a Vertex 

The degree of a vertex v in a graph G, written deg (v), is equal to the number of edges in G which 

contain v, that is, which are incident on v. Since each edge is counted twice in counting the degrees of 

the vertices of G, we have the following simple but important result. 

Theorem 1: The sum of the degrees of the vertices of a graph G is equal to twice the number of edges 

in G. 

Consider, for example, the graph in Fig. 1(a). We have 

deg(A) = 2, deg(B) = 3, deg(C) = 3, deg(D) = 2. 

The sum of the degrees equals 10 which, as expected, is twice the number of edges. A vertex is said to 

be even or odd according as its degree is an even or an odd number. Thus A and D are even vertices 

whereas B and C are odd vertices. Theorem 8.1: The sum of the degrees of the vertices of a graph G is 

equal to twice the number of edges in G. 

Theorem 1 also holds for multigraphs where a loop is counted twice toward the degree of its 

endpoint. For example, in Fig. 1(b) we have deg(D) = 4 since the edge e6 is counted twice; hence D is 

an even vertex. 

A vertex of degree zero is called an isolated vertex. 

Finite Graphs, Trivial Graph 

A multigraph is said to be finite if it has a finite number of vertices and a finite number of edges. 

Observe that a graph with a finite number of vertices must automatically have a finite number of 

edges and so must be finite. The finite graph with one vertex and no edges, i.e., a single point, is 

called the trivial graph. Unless otherwise specified, the multigraphs in this book shall be finite. 

 

 

 SUBGRAPHS, ISOMORPHIC AND HOMEOMORPHIC GRAPHS 

Subgraphs 

Consider a graph G = G(V, E). A graph H  = H(V J, EJ) is called a subgraph of G if the vertices and edges 

of H  are contained in the vertices and edges of G, that is, if V J ⊆ V  and EJ ⊆ E. In particular: 

(i) A subgraph H(V J, EJ) of G(V, E) is called the subgraph induced by its vertices V J if its edge set 

EJ 

contains all edges in G whose endpoints belong to vertices in H . 

(ii) If v is a vertex in G,  then G v is the subgraph of G obtained by deleting v from G and 

deleting all edges in G which contain v. 

(iii) If e is an edge in G, then G − e is the subgraph of G obtained by simply deleting the edge e 

from G. 

Isomorphic Graphs 

Graphs G(V, E) and G(V ∗, E∗) are said to be isomorphic if there exists a one-to-one correspondence f 

V V ∗ such that u, v is an edge of G if and only if f (u), f(v) is an edge of G∗. Normally, we do not 



distinguish between isomorphic graphs (even though their diagrams may “look different”). Figure 2 

gives ten graphs pictured as letters. We note that A and R are isomorphic graphs. Also, F and T are 

isomorphic graphs, K and X are isomorphic graphs and M, S, V , and Z are isomorphic graphs 

 

 Fig.2 

Homeomorphic Graphs 

Given any graph G, we can obtain a new graph by dividing an edge of G with additional vertices. Two 

graphs G and G∗ are said to homeomorphic if they can be obtained from the same graph or 

isomorphic graphs by this method. The graphs (a) and (b) in Fig. 3 are not isomorphic, but they are 

homeomorphic since they can be obtained from the graph (c) by adding appropriate vertices. 

 

                                      Fig.3 

8.4 PATHS, CONNECTIVITY 

A path in a multigraph G consists of an alternating sequence of vertices and edges of the form 

v0, e1, v1, e2, v2, ..., en−1, vn−1, en, vn 

where each edge ei contains the vertices vi 1 and vi (which appear on the sides of ei in the sequence). 

The number n of edges is called the length of the path. When there is no ambiguity, we denote a path 

by its sequence of vertices (v0, v1,..., vn). The path is said to be closed if v0 = vn. Otherwise, we say 

the path is from v0, to vn or between v0 and vn, or connects v0 to vn. 

A simple path is a path in which all vertices are distinct. (A path in which all edges are distinct will be 

called 

a trail.) A cycle is a closed path of length 3 or more in which all vertices are distinct except v0 vn. A 

cycle of length k is called a k-cycle. 

EXAMPLE   Consider the graph G in Fig. 4(a). Consider the following sequences: 

α = (P4, P1, P2, P5, P1, P2, P3, P6), β = (P4, P1, P5, P2, P6), 

γ = (P4, P1, P5, P2, P3, P5, P6), δ = (P4, P1, P5, P3, P6). 



The sequence α is a path from P4 to P6; but it is not a trail since the edge {P1, P2} is used twice. The 

sequence β is not a path since there is no edge {P2, P6}. The sequence γ  is a trail since no edge is 

used twice; but it is  not a simple path since the vertex P5 is used twice. The sequence δ  is a simple 

path from P4  to P6; but it is  not the shortest path (with respect to length) from P4 to P6. The 

shortest path from P4 to P6 is the simple path (P4, P5, P6) which has length 2.

 

                                               Fig.4  

By eliminating unnecessary edges, it is not difficult to see that any path from a vertex u to a vertex v 

can be replaced by a simple path from u to v. We state this result formally. 

Theorem 2: There is a path from a vertex u to a vertex v if and only if there exists a simple path from u 

to v.  

Connectivity, Connected Components 

A graph G is connected if there is a path between any two of its vertices. The graph in Fig. 8-8(a) is 

connected, but the graph in Fig. 4(b) is not connected since, for example, there is no path between 

vertices D and E. 

Suppose G is a graph. A connected subgraph H of G is called a connected component of G if H is not 

contained in any larger connected subgraph of G. It is intuitively clear that any graph G can be 

partitioned into its connected components. For example, the graph G in Fig. 4(b) has three connected 

components, the subgraphs induced by the vertex sets A, C, D , E, F , and B . 

The vertex B in Fig. 4(b) is called an isolated vertex since B does not belong to any edge or, in other 

words, deg(B) = 0. Therefore, as noted, B itself forms a connected component of the graph. 

Remark:  Formally speaking, assuming any vertex u is connected to itself, the relation “u is connected 

to v” is an equivalence relation on the vertex set of a graph G and the equivalence classes of the 

relation form the connected components of G. 

 

Distance and Diameter 

Consider a connected graph G. The distance between vertices u and v in G, written d(u, v), is the 

length  of the shortest path between u and v. The diameter of G, written diam(G), is the maximum 

distance between any two points in G. For example, in Fig. 5(a), d(A, F) = 2 and diam(G) = 3, whereas 

in Fig. 5(b), 

d(A, F) = 3 and diam(G) = 4. 

 



 

Cutpoints and Bridges 

Let G be a connected graph. A vertex v in G is called a cutpoint if G  v is disconnected. (Recall that G   v 

is the graph obtained from G by deleting v and all edges containing v.) An edge e of G is called a 

bridge if G e is disconnected. (Recall that G e is the graph obtained from G by simply deleting the edge 

e). In Fig. 5(a), the vertex D is a cutpoint and there are no bridges. In Fig. 5(b), the edge     D, F   is a 

bridge. (Its endpoints D and F are necessarily cutpoints.) 

 

                    

 

(a)                                 Fig.5                                        (b) 

 

 

 TRAVERSABLE AND EULERIAN GRAPHS, BRIDGES OF KÖNIGSBERG 

The eighteenth-century East Prussian town of Königsberg included two islands and seven bridges as 

shown in Fig.6(a). Question: Beginning anywhere and ending anywhere, can a person walk through 

town crossing all seven bridges but not crossing any bridge twice? The people of Königsberg wrote to 

the celebrated Swiss mathematician L. Euler about this question. Euler proved in 1736 that such a walk 

is impossible. He replaced the islands and the two sides of the river by points and the bridges by curves, 

obtaining Fig. 6(b). 

Observe that Fig. 6(b) is a multigraph. A multigraph is said to be traversable if it “can be drawn without 

any breaks in the curve and without repeating any edges,” that is, if there is a path which includes all 

vertices and uses each edge exactly once. Such a path must be a trail (since no edge is used twice) and 

will be called a traversable trail. Clearly a traversable multigraph must be finite and connected. 

 

 

 Fig.6  



We now show how Euler proved that the multigraph in Fig. 8-10(b) is not traversable and hence that 

the walk in Königsberg is impossible. Recall first that a vertex is even or odd according as its degree is 

an even or an odd number. Suppose a multigraph is traversable and that a traversable trail does not 

begin or end at a vertex P . We claim that P is an even vertex. For whenever the traversable trail 

enters P by an edge, there must always  be an edge not previously used by which the trail can leave P 

. Thus the edges in the trail incident with P must appear in pairs, and so P is an even vertex. Therefore 

if a vertex Q is odd, the traversable trail must begin or end at Q. Consequently, a multigraph with 

more than two odd vertices cannot be traversable. Observe that the multigraph corresponding to the 

Königsberg bridge problem has four odd vertices. Thus one cannot walk through Königsberg so that 

each bridge is crossed exactly once. 

Euler actually proved the converse of the above statement, which is contained in the following 

theorem and corollary. A graph G is called an Eulerian graph if there exists a closed traversable trail, 

called an Eulerian trail. 

Theorem .3 (Euler): A finite connected graph is Eulerian if and only if each vertex has even degree. 

Corollary.4: Any finite connected graph with two odd vertices is traversable. A traversable trail may 

begin at either odd vertex and will end at the other odd vertex. 

 

Hamiltonian Graphs 

The above discussion of Eulerian graphs emphasized traveling edges; here we concentrate on visiting 

vertices. A Hamiltonian circuit in a graph G, named after the nineteenth-century Irish mathematician 

William Hamilton (1803–1865), is a closed path that visits every vertex in G exactly once. (Such a 

closed path must be a cycle.) If G does admit a Hamiltonian circuit, then G is called a Hamiltonian 

graph. Note that an Eulerian circuit traverses every edge exactly once, but may repeat vertices, while 

a Hamiltonian circuit visits each vertex exactly once but may repeat edges. Figure 7 gives an example 

of a graph which is Hamiltonian but not Eulerian, and vice versa. 

 

 

                                                         Fig 7 

Although it is clear that only connected graphs can be Hamiltonian, there is no simple criterion to tell 

us whether or not a graph is Hamiltonian as there is for Eulerian graphs. We do have the following 

sufficient condition which is due to G. A. Dirac. 

Theorem 5:  Let G be a connected graph with n vertices. Then G is Hamiltonian if n  3 and n  deg(v) for 

each vertex v in G. 

 LABELED AND WEIGHTED GRAPHS 



A graph G is called a labeled graph if its edges and/or vertices are assigned data of one kind or 

another. In particular, G is called a weighted graph if each edge e of G is assigned a nonnegative 

number w(e) called the weight or length of v. Figure 8 shows a weighted graph where the weight of 

each edge is given in the obvious way. The weight (or length) of a path in such a weighted graph G is 

defined to be the sum of the weights of the edges in the path. One important problem in graph 

theory is to find a shortest path, that is, a path of minimum weight (length), between any two given 

vertices. The length of a shortest path between P and Q in Fig. 8 is 14; one such path is 

(P, A1, A2, A5, A3, A6, Q) 

The reader can try to find another shortest path. 

 

                                                             Fig 8 

 

COMPLETE, REGULAR, AND BIPARTITE GRAPHS 

There are many different types of graphs. This section considers three of them: complete, regular, 

and bipartite graphs. 

Complete Graphs 

A graph G is said to be complete if every vertex in G is connected to every other vertex in G. Thus a 

complete graph G must be connected. The complete graph with n vertices is denoted by Kn. Figure 9 

shows the graphs K1 through K6. 

Regular Graphs 

A graph G is regular of degree k or k-regular if every vertex has degree k. In other words, a graph is 

regular if every vertex has the same degree. 

The connected regular graphs of degrees 0, 1, or 2 are easily described. The connected 0-regular 

graph is the trivial graph with one vertex and no edges. The connected 1-regular graph is the graph 

with two vertices and one edge connecting them. The connected 2-regular graph with n vertices is the 

graph which consists of a single n-cycle. See Fig. 10. 

The 3-regular graphs must have an even number of vertices since the sum of the degrees of the 

vertices is an even number (Theorem 1). Figure 11 shows two connected 3-regular graphs with six 

vertices. In general, regular graphs can be quite complicated. For example, there are nineteen 3-

regular graphs with ten vertices. We note that the complete graph with n vertices Kn is regular of 

degree n − 1. 
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Bipartite Graphs 

 

A graph G is said to be bipartite if its vertices V can be partitioned into two subsets M and N such that 

each edge of G connects a vertex of M to a vertex of N . By a complete bipartite graph, we mean that 

each vertex of M  is connected to each vertex of N ; this graph is denoted by Km,n  where m is the 

number of vertices in M and 

n is the number of vertices in N , and, for standardization, we will assume m ≤ n. Figure 12 shows the 

graphs 

K2,3, K3,3, and K2,4, Clearly the graph Km,n has mn edges. 



 

                                Fig.12 

 

TREE GRAPHS 

A graph T is called a tree if T is connected and T has no cycles. Examples of trees are shown in Fig. 8-

17. A forest G is a graph with no cycles; hence the connected components of a forest G are trees. A 

graph without cycles is said to be cycle-free. The tree consisting of a single vertex with no edges is 

called the degenerate tree. 

Consider a tree T . Clearly, there is only one simple path between two vertices of T ; otherwise, the 

two paths would form a cycle. Also: 

(a) Suppose there is no edge  u, v   in T  and we add the edge e u, v to T . Then the simple 

path from u to v 

in T and e will form a cycle; hence T is no longer a tree. 

(b) On the other hand, suppose there is an edge e u, v in T , and we delete e from T . Then T is 

no longer connected (since there cannot be a path from u to v); hence T is no longer a tree. 

The following theorem  applies when our graphs are finite. 

Theorem 6: Let G be a graph with n > 1 vertices. Then the following are equivalent: 

(i) G is a tree. 

(ii) G is a cycle-free and has n − 1 edges. 

(iii) G is connected and has n − 1 edges. 

This theorem also tells us that a finite tree T with n vertices must have n 1 edges. For example, the 

tree in Fig.1 3(a) has 9 vertices and 8 edges, and the tree in Fig. 13(b) has 13 vertices and 12 edges. 

 

 

                                                     Fig 13 
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Spanning Trees 

A subgraph T of a connected graph G is called a spanning tree of G if T is a tree and T includes all the 

vertices of G. Figure 14 shows a connected graph G and spanning trees T1, T2, and T3 of G. 

 

                                                                       Fig 14. 

8.1 PLANAR GRAPHS 

A graph or multigraph which can be drawn in the plane so that its edges do not cross is said to be planar. 
Although the complete graph with four vertices K4 is usually pictured with crossing edges as in Fig.15(a), it can 

also be drawn with noncrossing edges as in Fig. 15(b); hence K4 is planar. Tree graphs form an important class 

of planar graphs. This section introduces our reader to these important graphs. 
 
 

                                                                  Fig 15 

Maps, Regions 

A particular planar representation of a finite planar multigraph is called a map. We say that the map is 

connected if the underlying multigraph is connected. A given map divides the plane into various regions. For 

example, the map in Fig. 16 with six vertices and nine edges divides the plane into five regions. Observe that 

four of the regions are bounded, but the fifth region, outside the diagram, is unbounded. Thus there is no loss in 

generality in counting the number of regions if we assume that our map is contained in some large rectangle 

rather than in the entire plane. 

Observe that the border of each region of a map consists of edges. Sometimes the edges will form a cycle, 

but sometimes not. For example, in Fig. 16 the borders of all the regions are cycles except for r3. However, if we 

do move counterclockwise around r3 starting, say, at the vertex C, then we obtain the closed path 

(C, D, E,F, E, C) 

where the edge E, F occurs twice. By the degree of a region r, written deg(r), we mean the length of the cycle 

or closed walk which borders r. We note that each edge either borders two regions or is contained in a region 

and will occur twice in any walk along the border of the region. Thus we have a theorem for regions which is 

analogous to Theorem 1 for vertices. 
 

 

Fig. 16 

 
Theorem .7: The sum of the degrees of the regions of a map is equal to twice the number of edges. 



3 3 

= 
= = 

= = 

The degrees of the regions of Fig. 16 are: 

deg(r1) = 3, deg(r2) = 3, deg(r3) = 5, deg(r4) = 4, deg(r5) = 3 

The sum of the degrees is 18, which, as expected, is twice the number of edges. 

For notational convenience we shall picture the vertices of a map with dots or small circles, or we shall 

assume that any intersections of lines or curves in the plane are vertices. 

 
Euler’s Formula 

Euler gave a formula which connects the number V of vertices, the number E of edges, and the number R 

of regions of any connected map. Specifically: 

Theorem 8 (Euler): V − E + R = 2. 

(The proof of Theorem 8.8 appears in Problem 8.18.) 

Observe that, in Fig. 8-22, V = 6, E = 9, and R = 5; and, as expected by Euler’s formula. 

V − E + R = 6 − 9 + 5 = 2 

We emphasize that the underlying graph of a map must be connected in order for Euler’s formula to hold. 

Let G be a connected planar multigraph with three or more vertices, so G is neither K1 nor K2. Let M be a 

planar representation of G. It is not difficult to see that (1) a region of M can have degree 1 only if its border is a 

loop, and (2) a region of M can have degree 2 only if its border consists of two multiple edges. Accordingly, if 

G is a graph, not a multigraph, then every region of M must have degree 3 or more. This comment together with 

Euler’s formula is used to prove the following result on planar graphs. 

Theorem 9: Let G be a connected planar graph with p vertices and q edges, where p ≥ 3. Then q ≥ 3p − 6. 

Note that the theorem is not true for K1  where p  = 1 and q  = 0, and is not true for K2  where p  = 2    

and q − 1. 

Proof : Let r be the number of regions in a planar representation of G. By Euler’s formula, p − q + r = 2. 

Now the sum of the degrees of the regions equals 2q by Theorem 8.7. But each region has degree 3 or more; 

hence 2q ≥ 3r. Thus r ≥ 2q/3. Substituting this in Euler’s formula gives 

2 = p − q + r ≤ p − q + 
2q 

or 2 ≤ p − 
q
 

 

Multiplying the inequality by 3 gives 6 ≤ 3p − q which gives us our result. 

Nonplanar Graphs, Kuratowski’s Theorem 

We give two examples of nonplanar graphs. Consider first the utility graph; that is, three houses A1, A2, A3 

are to be connected to outlets for water, gas and electricity, B1, B2, B3, as in Fig. 17(a). Observe that this is the 

graph K3,3 and it has p 6 vertices and q 9 edges. Suppose the graph is planar. By Euler’s formula a planar 

representation has r 5 regions. Observe that no three vertices are connected to each other; hence the degree of 

each region must be 4 or more and so the sum of the degrees of the regions must be 20 or more. By Theorem 8.7 

the graph must have 10 or more edges. This contradicts the fact that the graph has q = 9 edges. Thus the utility 
graph K3,3 is nonplanar. 

Consider next the star graph in Fig. 17(b). This is the complete graph K5 on p 5 vertices and has q 10 edges. 
If the graph is planar, then by Theorem 9. 

10 = q ≤ 3p − 6 = 15 − 6 = 9 

which is impossible. Thus K5 is nonplanar. 

 

 



 

 

Fig. 17 

 

 
Theorem 10: (Kuratowski) A graph is nonplanar if and only if it contains a subgraph homeomorphic to K3,3 

or K5. 

 

8.2 GRAPH COLORINGS 

Consider a graph G. A vertex coloring, or simply a coloring of G is an assignment of colors to the 

vertices of G such that adjacent vertices have different colors. We say that G is n-colorable if there 

exists a coloring of G which uses n colors. for example, “paint” G rather than “color” G when we are 

assigning colors to the vertices of G.) The minimum number of colors needed to paint G is called the 

chromatic number of G and is denoted by χ(G). 

Fig. 18 gives an algorithm by Welch and Powell for a coloring of a graph G. We emphasize that 

this algorithm does not always yield a minimal coloring of G. 

 

 

                                                  Fig 18 

EXAMPLE  

(a) Consider the graph G in Fig. 19. We use the Welch-Powell Algorithm 8.4 to obtain a coloring of G. Ordering 

the vertices according to decreasing degrees yields the following sequence: 

A5, A3, A7, A1, A2, A4, A6, A8 

 



= { } { } 

 

 

Fig. 19 

 

The first color is assigned to vertices A5 and A1. The second color is assigned to vertices A3, A4, 
and A8. The third color is assigned to vertices A7, A2, and A6. All the vertices have been assigned 
a color, and so G is 3-colorable. Observe that G is not 2-colorable since vertices A1, A2, and A3, 

which are connected to each other, must be assigned different colors. Accordingly, χ(G) = 3. 

(b) Consider the complete graph Kn with n vertices. Since every vertex is adjacent to every other vertex, Kn 

requires n colors in any coloring. Thus χ(Kn) = n. 

There is no simple way to actually determine whether an arbitrary graph is n-colorable. 

However, the following theorem  gives a simple characterization of 2-colorable graphs. 

 

 

Theorem 11: The following are equivalent for a graph G: 

(i) G is 2-colorable. 

(ii) G is bipartite. 

(iii) Every cycle of G has even length. 
 

There is no limit on the number of colors that may be required for a coloring of an arbitrary graph 
since, for example, the complete graph Kn requires n colors. However, if we restrict ourselves to 
planar graphs, regardless of the number of vertices, five colors suffice. Specifically, in Problem 8.20 
we prove: 

Theorem 12: Any planar graph is 5-colorable. 

 

Solved Problems 

 

GRAPH TERMINOLOGY 

8.1. Consider the graph G in Fig. 8-36(a). 

(a) Describe G formally, that is, find the set V (G) of vertices of G and the set E(G) of edges of G. 

(b) Find the degree of each vertex and verify Theorem 8.1 for this graph. 

(a) There are five vertices so V (G) A, B, C, D, E . There are seven pairs x, y of vertices where the vertex x is 

connected with the vertex y, hence 



E(G) = [{A, B}, {A, C}, {A, D}, {B, C}, {B, E}, {C, D}, {C, E}] 

(b) The degree of a vertex is equal to the number of edges to which it belongs; e.g., deg(A) = 3 since A belongs to 
the three edges {A, B}, {A, C}, {A, D}. Similarly, 

deg(B) = 3, deg(C) = 4, deg(D) = 2, deg(E) = 2 

The sum of the degrees is 3 + 3 + 4 + 2 + 2 = 14 which does equal twice the number of edges. 

 

 

 

Fig. 8-36 

 

8.2. Consider the graph G in Fig. 8-36(b). Find: 

(a) all simple paths from A to F ; (d ) diam(G), the diameter of G; 

(b) all trails from A to F ; (e) all cycles which include vertex A; 

(c) d(A, F), the distance from A to F ; ( f ) all cycles in G. 
 

(a) A simple path from A to F is a path such that no vertex, and hence no edge, is repeated. There are seven such 

paths, four beginning with the edges {A, B} and three beginning with the ege {A, D}: 

(A,B, C,F), (A,B, C, E,F), (A,B, E,F), (A,B, E, C,F), 

(A, D, E,F), (A, D, E,B, C,F), (A, D, E, C,F). 

 

(b) A trail from A to F is a path such that no edge is repeated. There are nine such trails, the seven simple paths 
from 

(a) together with 

(A, D, E,B, C, E,F) and (A, D, E, C,B, E,F). 

(c) There is a path, e.g., (A,B, C,F), from A to F of length 3 and no shorter path from A to F ; hence d(A, F) = 3. 

(d) The distance between any two vertices is not greater than 3, and the distance from A to F is 3; hence diam(G) = 3. 

(e) A cycle is a closed path in which no vertex is repeated (except the first and last). There are three cycles which 

include vertex A: 

(A,B, E, D, A), (A,B, C, E, D, A), (A,B, C,F, E, D, A). 

 

(f) There are six cycles in G; the three in (e) and 

(B, C, E,B), (C,F, E,C), (B, C,F, E,B). 



− 

8.3. Consider the multigraphs in Fig. 8-37. 

(a) Which of them are connected? If a graph is not connected, find its connected components. 

(b) Which are cycle-free (without cycles)? 

(c) Which are loop-free (without loops)? 

(d) Which are (simple) graphs? 

 

(a) Only (1) and (3) are connected, (2) is disconnected; its connected components are {A, D, E} and {B, C}. (4) is 
disconnected; its connected components are {A, B, E} and {C, D}. 

(b) Only (1) and (4) are cycle-free. (2) has the cycle (A, D, E, A), and (3) has the cycle (A,B, E, A). 

(c) Only (4) has a loop which is {B, B}. 

(d) Only (1) and (2) are graphs. Multigraph (3) has multiple edges {A, E} and {A, E}; and (4) has both multiple edges 

{C, D} and {C, D} and a loop {B, B}. 

 

Fig. 8-37 

 

8.4. Let G be the graph in Fig. 8-38(a). Find: 

(a) all simple paths from A to C; (d )  G Y ; 
(b) all cycles; (e) all cut points; 

(c) subgraph H generated by V J = {B, C, X, Y }; ( f ) all bridges. 

(a) There are two simple paths from A to C: (A, X, Y,C) and (A, X,B, Y,C). 

(b) There is only one cycle: (B, X, Y,B). 

(c) As pictured in Fig. 8-38(b), H consists of the vertices V J and the set EJ of all edges whose endpoints belong to V J, 

that is, EJ = [{B, X}, {X, Y }, {B, Y }, {C, Y }]. 

(d) Delete vertex Y from G and all edges which contain Y to obtain the graph G − Y in Fig. 8-38(c). (Note Y is a 
cutpoint since G − Y is disconnected.) 

(e) Vertices A, X, and Y are cut points. 

(f) An edge e is a bridge if G − e is disconnected. Thus there are three bridges: {A, Z}, {A, X}, and {C, Y }. 

 

 

 

   

 

Fig. 8-38 



8.5. Consider the graph G in Fig. 8-36(b). Find the subgraphs obtained when each vertex is deleted. Does G 

have any cut points? 

When we delete a vertex from G, we also have to delete all edges which contain the vertex. The six graphs obtained 

by deleting each of the vertices of G are shown in Fig. 8-39. All six graphs are connected; hence no vertex is a cut 

point. 

 

 

Fig. 8-39 

 

8.6. Show that the six graphs obtained in Problem 8.5 are distinct, that is, no two of them are isomorphic. 
Also show that (B) and (C) are homeomorphic. 

The degrees of the five vertices of any graph cannot be paired off with the degrees of any other graph, except for (B) 

and (C). Hence none of the graphs is isomorphic except possibly (B) and (C). 

However if we delete the vertex of degree 3 in (B) and (C), we obtain distinct subgraphs. Thus (B) and (C) are also 

nonisomorphic; hence all six graphs are distinct. However, (B) and (C) are homeomorphic since they can be obtained 

from isomorphic graphs by adding appropriate vertices. 

 

TRAVERSABLE GRAPHS, EULER AND HAMILTONIAN CIRCUITS 

8.7. Consider each graph in Fig. 8-40. Which of them are traversable, that is, have Euler 

paths? Which are Eulerian, that is, have an Euler circuit? For those that do not, explain 

why. 

 

 

 

Fig. 8-40 

 

G is traversable (has an Euler path) if only 0 or 2 vertices have odd degree, and G is Eulerian 
(has an Euler circuit) if all vertices are of even degree (Theorem 8.3). 

 



(a) Traversable, since there are two odd vertices. The traversable path must begin at one of the odd vertices and 

will end at the other. 

(b) Traversable, since all vertices are even. Thus G has an Euler circuit. 

(c) Since six vertices have odd degrees, G is not traversable. 

8.8. Which of the graphs in Fig. 8-40 have a Hamiltonian circuit? If not, why not? 

Graphs (a) and (c) have Hamiltonian circuits. (The reader should be able to easily find one of them.) However, graph 

(b) has no Hamiltonian circuit. For if α is a Hamiltonian circuit, then α must connect the middle vertex with the lower 

right vertex, then proceed along the bottom row to the lower right vertex, then vertically to the middle right, but then 

is forced back to the central vertex before visiting the remaining vertices. 

8.9. Prove Theorem 8.3 (Euler): A finite connected graph G is Eulerian if and only if each vertex has even degree. 

Suppose G is Eulerian and T is a closed Eulerian trail. For any vertex v of G, the trail T enters and leaves v the same 

number of times without repeating any edge. Hence v has even degree. 

Suppose conversely that each vertex of G has even degree. We construct an Eulerian trail. We begin a trail T1 at any 
edge e. We extend T1  by adding one edge after the other. If T1  is not closed at any step, say, T1  begins at u but ends  

at v /= u, then only an odd number of the edges incident on v appear in T1; hence we can extend T1 by another edge 
incident on v. Thus we can continue to extend T1 until T1 returns to its initial vertex u, i.e., until T1 is closed. If T1 

includes all the edges of G, then T1 is our Eulerian trail. 

Suppose T1  does not include all edges of G. Consider the graph H  obtained by deleting all edges of T1  from G. H 

may not be connected, but each vertex of H  has even degree since T1  contains an even number of the edges incident 

on any vertex. Since G is connected, there is an edge eJ  of H  which has an endpoint uJ  in T1. We construct a trail T2 

in H  beginning at uJ  and using eJ. Since all vertices in H  have even degree, we can continue to extend T2  in H  until 

T2  returns to uJ  as pictured in Fig. 8-41. We can clearly put T1  and T2  together to form a larger closed trail in G. We 

continue this process until all the edges of G are used. We finally obtain an Eulerian trail, and so G is Eulerian. 

 

 

 

Fig. 8-41 

 

 

TREES, SPANNING TREES 

8.10. Draw all trees with exactly six vertices. 

There are six such trees which are exhibited in Fig. 8-42. The first tree has diameter 5, the next two diameter 4, the 

next two diameter 3, and the last one diameter 2. Any other tree with 6 nodes is isormorphic to one of these trees. 

 



 

Fig. 8-42 

 

8.11. Find all spanning trees of the graph G shown in Fig. 8-43(a). 

There are eight such spanning trees as shown in Fig. 8-43(b). Each spanning tree must have 4 − 1 = 3 edges since G 

has four vertices. Thus each tree can be obtained by deleting two of the five edges of G. This can be done in 10 ways, 

 

 

Fig. 8-43 

 

except that two of the ways lead to disconnected graphs. Hence the above eight spanning trees are all the spanning 

trees of G. 

8.12. Find a minimal spanning tree T for the weighted graph G in Fig. 8-44(a). 

 

 

Fig. 8-44 

 

Since G has n = 9 vertices, T must have n − 1 = 8 edges. Apply Algorithm 8.2, that is, keep deleting edges with 

maximum length and without disconnecting the graph until only n−1 = 8 edges remain. Alternatively, apply Algorithm 
8.3, that is, beginning with the nine vertices, keep adding edges with minimum length and without forming any circle 

until n − 1 = 8 edges are added. Both methods give a minimum spanning tree such as that shown in Fig. 8-44(b). 

8.13. Let G be a graph with more than one vertex. Prove the following are equivalent. 

(i) G is a tree. 

(ii) Each pair of vertices is connected by exactly one simple path. 

(iii) G is connected; but G − e is disconnected for any edge e of G. 

(iv) G is cycle-free, but if any edge is added to G then the resulting graph has exactly one cycle. 
 

(i) implies (ii) Let u and v be two vertices in G. Since G is a tree, G is connected so there is at least one path between 

u and v. By Problem 8.37 there can only be one simple path between u and v, otherwise G will contain a cycle. 

(ii) implies (iii) Suppose we delete an edge e = {u, v} from G. Note e is a path from u to v. Suppose the resulting 



= 
= 

= { } 
= − 

= − 
= { } 

= { } 

= 

graph G − e has a path P from u to v. Then P and e are two distinct paths from u to v, which contradicts the 
hypothesis. Thus there is no path between u and v in G − e, so G − e is disconnected. 

(iii) implies (iv) Suppose G contains a cycle C which contains an edge e    u, v  . By hypothesis, G is connected but GJ 

G e is disconnected, with u and v belonging to different components of GJ (Problem 8.41) This contradicts the 

fact that u and v are connected by the path P     C     e which lies in GJ. Hence G is cycle-free. Now let x and y be 
vertices of G and let H  be the graph obtained by adjoining the edge e  x, y  to G. Since G is connected, there is a 

path P from x to y in G; hence C  Pe forms a cycle in H . Suppose H contains another cycle CJ. Since G is cycle-free, 

CJ must contain the edge e, say CJ P Je. Then P and P J are two simple paths in G from x to y. (See Fig. 8-45.) By 
Problem 8.37, G contains a cycle, which contradicts the fact that G is cycle-free. Hence H contains only one cycle. 

(iv) implies (i) Since adding any edge e x, y to G produces a cycle, the vertices x and y must already be 

connected in G. Hence G is connected and by hypothesis G is cycle-free; that is, G is a tree. 

 

 

 

Fig. 8-45 
 

8.14. Prove Theorem 8.6: Let G be a finite graph with n ≥ 1 vertices. Then the following are equivalent. 

(i) G is a tree, (ii) G is a cycle-free and has n − 1 edges, (iii) G is connected and has n − 1 
edges. 

The proof is by induction on n. The theorem is certainly true for the graph with only one vertex and hence no edges. 

That is, the theorem holds for n   1. We now assume that n > 1 and that the theorem holds for graphs with less than 

n vertices. 

 

(i) implies (ii) Suppose G is a tree. Then G is cycle-free, so we only need to show that G has n − 1 edges. By Problem 
8.38, G has a vertex of degree 1. Deleting this vertex and its edge, we obtain a tree T which has n − 1 vertices. 
The theorem holds for T , so T has n − 2 edges. Hence G has n − 1 edges. 

(ii) implies (iii) Suppose G is cycle-free and has n − 1 edges. We only need show that G is connected. Suppose G is 
disconnected and has k components, T1 ,. . . ,  Tk , which are trees since each is connected and cycle-free. Say Ti has 

ni vertices. Note ni < n. Hence the theorem holds for Ti , so Ti has ni − 1 edges. Thus 

n = n1 + n2 + ··· + nk 

and  

n − 1 = (n1 − 1) + (n2 − 1) + ··· + (nk − 1) = n1 + n2 + ··· + nk − k = n − k 



= 
Hence k 1. But this contradicts the assumption that G is disconnected and has k > 1 components. Hence G 

is connected. 

(iii) implies (i) Suppose G is connected and has n − 1 edges. We only need to show that G is cycle-free. Suppose G 
has a cycle containing an edge e. Deleting e we obtain the graph H = G − e which is also connected. But H has 
n vertices and n − 2 edges, and this contradicts Problem 8.39. Thus G is cycle-free and hence is a tree. 

 
PLANAR GRAPHS 

8.15. Draw a planar representation, if possible, of the graphs (a), (b), and (c) in Fig. 8-46. 

 

 

Fig. 8-46 

(a) Redrawing the positions of B and E, we get a planar representation of the graph as in Fig. 8-47(a). 

(b) This is not the star graph K5. This has a planar representation as in Fig. 8-47(b). 

(c) This graph is non-planar. The utility graph K3,3 is a subgraph as shown in Fig. 8-47(c) where we have redrawn 
the positions of C and F . 

 

 

 

Fig. 8-47 

 

8.16. Count the number V of vertices, the number E of edges, and the number R of regions of each map in  

Fig. 8-48; and verify Euler’s formula. Also find the degree d of the outside region. 
 

 



≤ 

≤ − 

Fig. 8-48 

 

(a) V = 4,E = 6,R = 4. Hence V − E + R = 4 − 6 + 4 = 2. Also d = 3. 

(b) V = 6,E = 9,R = 5; so V − E + R = 6 − 9 + 5 = 2. Here d = 6 since two edges are counted twice. (c) 

V = 5,E = 10,R = 7. Hence V − E + R = 5 − 10 + 7 = 2. Here d = 5. 

8.17. Find the minimum number n of colors required to paint each map in Fig. 8-48. 

(a) n = 4; (b) n = 3; (c) n = 2. 

8.18. Prove Theorem 8.8 (Euler): V − E + R = 2. 

Suppose the connected map M consists of a single vertex P as in Fig. 8-49(a). Then V = 1, E = 0, and R = 1. 

Hence V − E + R = 2. Otherwise M can be built up from a single vertex by the following two constructions: 

(1) Add a new vertex Q2 and connect it to an existing vertex Q1 by an edge which does not cross any 
existing edge as in Fig. 8-49(b). 

(2) Connect two existing vertices Q1  and Q2  by an edge e  which does not cross any existing edge as in  Fig. 
8-49(c). 

 

Neither operation changes the value of V − E + R. Hence M has the same value of V − E + R as the map consisting 

of a single vertex, that is, V − E + R = 2. Thus the theorem is proved. 

 

 

Fig. 8-49 

 

8.19. Prove Theorem 8.11: The following are equivalent for a graph G: (i) G is 2-colorable. (ii) G is bipartite. 

(iii) Every cycle of G has even length. 

 

(i) implies (ii). Suppose G is 2-colorable. Let M be the set of vertices painted the first color, and let N be the set of 

vertices painted the second color. Then M and N form a bipartite partition of the vertices of G since neither the 

vertices of M nor the vertices of N can be adjacent to each other since they are of the same color. 

(ii) implies (iii). Suppose G is bipartite and M and N form a bipartite partition of the vertices of G. If a cycle begins at 

a vertex u of, say, M, then it will go to a vertex of N , and then to a vertex of M, and then to N and so on. Hence 

when the cycle returns to u it must be of even length. That is, every cycle of G will have even length. 

(iii) implies (i). Lastly, suppose every cycle of G has even length. We pick a vertex in each connected component and 

paint it the first color, say red. We then successively paint all the vertices as follows: If a vertex is painted red, 

then any vertex adjacent to it will be painted the second color, say blue. If a vertex is painted blue, then any vertex 

adjacent to it will be painted red. Since every cycle has even length, no adjacent vertices will be painted the same 

color. Hence G is 2-colorable, and the theorem is proved. 

 

8.20. Prove Theorem 8.12: A planar graph G is 5-colorable. 

The proof is by induction on the number p of vertices of G. If p 5, then the theorem obviously holds. Suppose 

p > 5, and the theorem holds for graphs with less than p vertices. By the preceding problem, G has a vertex v such that 



deg(v)  5. By induction, the subgraph G   v is 5-colorable. Assume one such coloring. If the vertices adjacent to v use 

less than the five colors, than we simply paint v with one of the remaining colors and obtain a 5-coloring of G. We are 

still left with the case that v is adjacent to five vertices which are painted different colors. Say the vertices, moving 

counterclockwise about v, are v1 ,. . . , v5 and are painted respectively by the colors c1 ,. . . , c5. (See Fig. 8-50(a).) 

 

 

Fig. 8-50 

 

Consider now the subgraph H of G generated by the vertices painted c1 and c3. Note H includes v1 and v3. If v1 

and v3 belong to different components of H , then we can interchange the colors c1 and c3 in the component containing 

v1 without destroying the coloring of G − v. Then v1 and v3 are painted by c3, c1 can be chosen to paint v, and we 
have a 5-coloring of G. On the other hand, suppose v1 and v3 are in the same component of H . Then there is a path 

P from v1 to v3 whose vertices are painted either c1 or c3. The path P together with the edges {v, v1} and {v, v3} form 

a cycle C which encloses either v2 or v4. Consider now the subgraph K generated by the vertices painted c3 or c4. 

Since C encloses v2 or v4, but not both, the vertices v2 and v4 belong to different components of K. Thus we can 

interchange the colors c2 and c4 in the component containing v2 without destroying the coloring of G − v. Then v2 

and v4 are painted by c4, and we can choose c2 to paint v and obtain a 5-coloring of G. Thus G is 5-colorable and the 

theorem is proved. 

 

8.21. Use the Welch-Powell Algorithm 8.4 (Fig. 8-24) to paint the graph in Fig. 8-50(b). 

First order the vertices according to decreasing degrees to obtain the sequence 

 

H, A, D, F, B, C, E, G 

 

Proceeding sequentially, we use the first color to paint the vertices H , B, and then G. (We cannot paint A, D, or 

F the first color since each is connected to H , and we cannot paint C or E the first color since each is connected to 

either H or B.) Proceeding sequentially with the unpainted vertices, we use the second color to paint the vertices A 

and D. The remaining vertices F , C, and E can be painted with the third color. Thus the chromatic number n cannot 

be greater than 3. However, in any coloring, H , D, and E must be painted different colors since they are connected 

to each other. Hence n = 3. 

8.22. Let G be a finite connected planar graph with at least three vertices. Show that G has at least one 

vertex of degree 5 or less. 

Let p be the number of vertices and q the number of edges of G, and suppose deg(u) ≥ 6 for each vertex u of G. 

But 2q equals the sum of the degrees of the vertices of G (Theorem 8.1); so 2q ≥ 6p. Therefore 

q ≥ 3p > 3p − 6 



= = 
= 

This contradicts Theorem 8.9. Thus some vertex of G has degree 5 or less. 

9.1 ROOTED TREES 

Recall that a tree graph is a connected cycle-free graph, that is, a connected graph without any 

cycles. A rooted tree T is a tree graph with a designated vertex r called the root of the tree. Since there 

is a unique simple path from the root r to any other vertex v in T , this determines a direction to the 

edges of T . Thus T may be viewed as a directed graph. We note that any tree may be made into a 

rooted tree by simply selecting one of the vertices as the root. 

Consider a rooted tree T with root r. The length of the path from the root r to any vertex v is called 

the level (or depth) of v, and the maximum vertex level is called the depth of the tree. Those vertices 

with degree 1, other than the root r, are called the leaves of T , and a directed path from a vertex to 

a leaf is called a branch. 

One usually draws a picture of a rooted tree T with the root at the top of the tree. Figure 9-2(a) 

shows a rooted tree T with root r and 10 other vertices. The tree has five leaves, d,f, h, i, and j . 

Observe that: level(a) 1, level(f ) 2, level(j) 3. Furthermore, the depth of the tree is 3. 

The fact that a rooted tree T gives a direction to the edges means that we can give a precedence 

relationship between the vertices. Specifically, we will say that a vertex u precedes a vertex v or that 

v follows u if there is 

 

 

 

 

 

 

 

 

 

Fig. 9-2 

 

 

a (directed) path from v to u. In particular, we say that v immediately follows u if (u, v) is an edge, 

that is, if v follows u and v is adjacent to u. We note that every vertex v, other than the root, 

immediately follows a unique vertex, but that v can be immediately followed by more than one 

vertex. For example, in Fig. 9-2(a), the vertex j follows c but immediately follows g. Also, both i and j 

immediately follow g. 

A rooted tree T is also a useful device to enumerate all the logical possibilities of a sequence of 

events where each event can occur in a finite number of ways. This is illustrated in the following 

example. 

 

 



= 

EXAMPLE 9.5 Suppose Marc and Erik are playing a tennis tournament such that the first person to 

win two games in a row or who wins a total of three games wins the tournament. Find the number of 

ways the tournament can proceed. 

The rooted tree in Fig. 9-2(b) shows the various ways that the tournament could proceed. There 

are 10 leaves which correspond to the 10 ways that the tournament can occur: 

MM, MEMM, MEMEM, MEMEE, MEE, EMM, EMEMM, EMEME, EMEE, EE 

Specifically, the path from the root to the leaf describes who won which games in the particular 

tournament. 

 

Ordered Rooted Trees 

Consider a rooted tree T  in which the edges leaving each vertex are ordered. Then we have the 

concept   of an ordered rooted tree. One can systematically label (or address) the vertices of such a 

tree as follows: We first assign 0 to the root r. We next assign 1, 2, 3,...  to the vertices immediately 

following r according as the edges were ordered. We then label the remaining vertices in the 

following way. If a is the label of a vertex v, then a.1, a.2,...  are assigned to the vertices immediately 

following v according as the edges were ordered. We illustrate this address system in Fig. 9-3(a), 

where edges are pictured from left to right according to their order. Observe that the number of 

decimal points in any label is one less than the level of the vertex. We will refer to this labeling system 

as the universal address system for an ordered rooted tree. 

The universal address system gives us an important way of linearly describing (or storing) an 

ordered rooted tree. Specifically, given addresses a and b, we let a  < b if b a.c, (that is, a is an initial 

segment of b), or if there exist positive integers m and n with m < n such that 

a = r.m.s   and b = r.n.t 

This order is called the lexicographic order since it is similar to the way words are arranged in a 

dictionary. For example, the addresses in Fig. 9-3(a) are linearly ordered as pictured in Fig. 9-3(b). 

This lexicographic order is 

  

 

 

Fig. 9-3 

 

identical to the order obtained by moving down the leftmost branch of the tree, then the next branch 

to the right, then the second branch to the right, and so on. 
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